精英家教网 > 高中数学 > 题目详情

【题目】如图是某校举行歌唱比赛时,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数依次为(

A.87,86
B.83,85
C.88,85
D.82,86

【答案】A
【解析】解:由茎叶图知,去掉一个最高分93和一个最低分78后,
所剩数据82,83,87,88,90的中位数是87,
平均数是 ×(82+83+87+88+90)=86.
故选:A.
【考点精析】利用茎叶图对题目进行判断即可得到答案,需要熟知茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,A、B、C的对边分别为a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和等边三角形中, ,平面平面

(1)在上找一点,使,并说明理由;

(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G,△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=

(1)求证:平面DEG∥平面BCF;
(2)若D,E为AB,AC上的中点,H为BC中点,求异面直线AB与FH所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆CA,B两点,交y轴于点M.点NM关于O的对称点,⊙N的半径为|NO|. 设DAB的中点,DE,DF与⊙N分别相切于点E,F,求EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MACPA=PD=,AB=4.

(I)求证:MPB的中点;

(II)求二面角B-PD-A的大小;

(III)求直线MC与平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,
(1)求f(1)和f(﹣1)的值;
(2)试判断f(x)的奇偶性,并加以证明;
(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

同步练习册答案