精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{x-1,(x≤1)}\\{{3}^{x},(x>1)}\end{array}\right.$,f(a)=9,则f(f(0))=-2,a=2.

分析 直接利用分段函数的解析式求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x-1,(x≤1)}\\{{3}^{x},(x>1)}\end{array}\right.$,f(a)=9,
可得3a=9,解得a=2.
f(f(0))=f(0-1)=-1-1=-2.
故答案为:-2;2.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-$\overrightarrow{b}$.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若$\overrightarrow{c}$⊥$\overrightarrow{d}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=(k-2)x2+(k-3)x+3是偶函数,则实数k的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足2x+y+5=0,那么$\sqrt{{x^2}+{{({y+3})}^2}}$的最小值为(  )
A.$\frac{{8\sqrt{5}}}{5}$B.$\frac{{6\sqrt{5}}}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若数列a1,$\frac{{a}_{2}}{{a}_{1}}$,$\frac{a_3}{a_2}$,…,$\frac{a_n}{{{a_{n-1}}}}$是首项为1,公比为$-\sqrt{2}$的等比数列,则a4等于(  )
A.-8B.$-2\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x、y的一组数据如表:
x23456
y34689
则由表中的数据算得线性回归方程可能是(  )
A.$\widehat{y}=2x+2$B.$\widehat{y}=\frac{8}{5}x-\frac{2}{5}$C.$\widehat{y}=-\frac{3}{2}x+12$D.$\widehat{y}=2x-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2sinxcosx的最大值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,则t=2x+y的最小值是(  )
A.1B.2C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=mx2-mx-1.
(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;
(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.
变式1:将(1)变为:若不等式mx2-mx-1<0对m∈[1,2]恒成立,求实数x的取值范围.
变式2:将(2)中条件“f(x)<5-m恒成立”改为“f(x)<5-m无解”,如何求m的取值范围.
变式3:将(2)条件“f(x)<5-m恒成立”改为“存在x,使f(x)<5-m成立”,如何求m的取值范围.

查看答案和解析>>

同步练习册答案