精英家教网 > 高中数学 > 题目详情
已知函数
(1)求处的切线方程;
(2)若有唯一解,求的取值范围;
(3)是否存在实数,使得上均为增函数,若存在求出的范围,若不存在请说明理由
(1)(2)    (3)不存在实数 
本试题主要考查了导数的概念和导数的运算,以及导数的几何意义的运用,并利用导数研究函数的单调性和函数的零点问题的综合运用试题。
(1)先求解导数,利用点斜式写出切线方程。
(2)原方程等价于,令
则函数轴右侧有唯一交点。转化为图像与图像的交点来处理。
(3)分别分析函数的单调区间,然后结合结论,判定都是单调增函数时的参数的取值范围
解:(1); ……………3分
(2)原方程等价于,令
则函数轴右侧有唯一交点。

,当
上单调递减,在上单调递增。
时有极小值时有极大值
有唯一解时     ……………8分
(3)
,当
上单调递减,在上单调递增。
上单调递减,在上单调递增。
上单调递增, 使得上均为增函数则满足,不等式组无解,故不存在实数   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.已知函数. 
(1)求函数的单调区间;
(2)设函数.是否存在实数,使得?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间(0,3)是增函数,则k的取值范围是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知为直线为常数)及所围成的图形的面积,为直线为常数)及所围成的图形的面积,(如图)
(1)当时,求的值。
(2)若,求的最小值。
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知是函数的一个极值点.
(Ⅰ)求
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数 的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设
(1)若函数在区间内单调递减,求的取值范围;
(2) 若函数处取得极小值是,求的值,并说明在区间内函数
的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上不单调,则实数的取值范围是(   ) .
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为常数)在定义域上是增函数,则实数的取值范围是                 

查看答案和解析>>

同步练习册答案