精英家教网 > 高中数学 > 题目详情
某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)求这次测试数学成绩的众数;
(2)求这次测试数学成绩的中位数;
(3)求这次测试数学成绩的平均数.
考点:众数、中位数、平均数,频率分布直方图
专题:概率与统计
分析:(1)在直方图中,高度最高的小矩形的中间值的横坐标即为众数.
(2)在频率分布直方图中,将频率分布直方图中所有小矩形面积一分为二的直线所对应的成绩即为所求.
(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.
解答: 解:(1)由众数概念知,众数是出现次数最多的,
在直方图中,高度最高的小矩形的中间值的横坐标即为众数,
由频率分布直方图知,这次测试数学成绩的众数为75.
(2)由于中位数是所有数据中的中间值,
故在直方图中,体现的是中位数的左右两边频数应用相等,即频率相等,
从而就是小矩形的面积和相等,
因此在频率分布直方图中,
将频率分布直方图中所有小矩形面积一分为二的直线所对应的成绩即为所求,
∵前三个小矩形的面积和为(0.005+0.015+0.020)×10=0.4,
第四个小矩形的面积为0.030×10=0.3,0.4+0.3=0.7>0.5,
∴中位数应位于第四个小矩形中,
设其底边为x,高为0.03,
∴令0.03x=0.1,解得x=
10
3
=3
1
3

故成绩的中位数为73
1
3

(3)平均数是频率分布直方图的“重心”,
等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.
所以平均成绩为:
45×(0.005×10)+55×(0.015×10)+65×(0.020×10)+
75×(0.030×10)+85×(0.025×10)+95×(0.005×10)=72.
∴成绩的平均分为72.
点评:本题考查利用频率分布直方图求众数、中位数、平均数的方法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,Sn=4an+2,a1=-
2
3
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足a1=
2
3
,an+1=
2an
an+2
,b1+2b2+22b3+…+2n-1bn=n(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设数列{
bn
an
}的前n项和Tn,问是否存在正整数m、M,且M-n=3,使得m<Tn<M对一切n∈N*恒成立?若存在,求出m、M的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过A(1,4)、B(3,2)两点,且圆心在直线y=0上.
(1)求圆C的方程;
(2)判断点P(2,4)与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x2-2x+3
x2-x+1
,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B是椭圆
x2
a2
+
y2
b2
=1的右顶点和上顶点,F1是它的左焦点,过F1作PF1⊥x轴,与椭圆在x轴上方的交点为P,OP∥AB.
(1)求椭圆的离心率;
(2)若AB=
3
,求该椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-2tx-4(t∈R)在闭区间[0,1]上的最小值记为g(t).
(1)试写出g(t)的函数解析式;
(2)作出g(t)的大致图象,并写出g(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数x,f(x)≥
1
4a
-
1
2
恒成立.请解决下列问题:
(1)求f(x)的解析式.
(2)若g(x)=f(x)-kx在[-2,2]上不单调,求实数k的取值范围.

查看答案和解析>>

同步练习册答案