精英家教网 > 高中数学 > 题目详情
设A,B是椭圆
x2
a2
+
y2
b2
=1的右顶点和上顶点,F1是它的左焦点,过F1作PF1⊥x轴,与椭圆在x轴上方的交点为P,OP∥AB.
(1)求椭圆的离心率;
(2)若AB=
3
,求该椭圆方程.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(1)如图所示,由PF1⊥x轴,可得P(-c,
b2
a
)
.由于OP∥AB,可得kOP=kAB.再利用椭圆的离心率计算公式即可得出.
(2)由|AB|=
3
,可得
a2+b2
=
3
,与b=c=1,a2=b2+c2联立解出即可.
解答: 解:(1)如图所示,
∵F1(-c,0),PF1⊥x轴,
∴P(-c,
b2
a
)

∵OP∥AB,∴kOP=kAB
b2
a
-c
=
b
-a
,解得b=c.
a=
2
c.
∴椭圆的离心率e=
c
a
=
2
2

(2)∵|AB|=
3
,∴
a2+b2
=
3
,即a2+b2=3.
联立
a2+b2=3
b=c
a2=b2+c2

解得b=c=1,a2=2.
∴椭圆的方程为:
x2
2
+y2
=1.
点评:本题考查了椭圆的标准方程及其性质、平行线与斜率的关系,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司将进货单价为8元一个的商品按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,则销售量就减少10个.
(1)试将每天利润y表示为销售价上涨x元的函数解析式;
(2)求销售价为13元时每天的销售利润;
(3)如果销售利润为360元,那么销售价上涨了几元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+3在(-∞,4]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)求这次测试数学成绩的众数;
(2)求这次测试数学成绩的中位数;
(3)求这次测试数学成绩的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的左右两个焦点分别为F1、F2,右顶点为A,上顶点为B,P为椭圆第一象限内一点.
(1)若S△PF1F2=S△PAF2,求椭圆的离心率;
(2)若S△PF1F2=S△PBF1,求直线PF1斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=(
1
2
x-m,若对于?x1∈[-1,3],x2∈[0,2],使得f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
(x∈(0,+∞)).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对任意的x≥1,都有f(x)≥k(x+
3
x
)+2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)在线段PA上是否存在点G,使得EG∥平面PFD,若存在,确定点G的位置;若不存在,说明理由;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线l:y=-2的距离小1.
(1)求曲线C的方程;
(2)动点E在直线l上,过点E分别作曲线C的切线EA、EB,切点为A、B.
(i)求证:直线AB恒过一定点,并求出该定点的坐标;
(ii)在直线l上是否存在一点E,使得△ABM为等边三角形(M是线段AB的中垂线与直线l的交点)?若存在,求出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案