精英家教网 > 高中数学 > 题目详情
7.已知正四棱锥的侧棱与底面成60°角,则此四棱锥的底边与不相邻的侧棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.

分析 由题意画出图形,设正四棱锥的底面边长为a,可得AC=$\sqrt{2}a$,AO=$\frac{\sqrt{2}}{2}a$,再由侧棱与底面成60°角,求得侧棱长,解直角三角形可得四棱锥的底边与不相邻的侧棱所成角的余弦值.

解答 解:如图,设正四棱锥的底面边长为a,则AC=$\sqrt{2}a$,
∴AO=$\frac{\sqrt{2}}{2}a$,又侧棱与底面成60°角,∴PA=$\sqrt{2}a$,PB=$\sqrt{2}a$,
在△PAB中,由$PA=PB=\sqrt{2}a$,AB=a,
可得cos∠PAB=$\frac{\frac{a}{2}}{\sqrt{2}a}=\frac{\sqrt{2}}{4}$.
∴四棱锥的底边与不相邻的侧棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.
故答案为:$\frac{\sqrt{2}}{4}$.

点评 本题考查异面直线所成角,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知反比例函数y=$\frac{6}{x}$的图象与正比例函数y=$\frac{2}{3}$x的图象交于A,B两点,B点坐标为(-3,-2),则A点的坐标为(  )
A.(-1,-6)B.(1,6)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,则C=(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.向量$\overrightarrow{m}$,$\overrightarrow{n}$,分别对应复数m,n,且m=$\frac{3}{a+5}$-(10-a2)i,n=$\frac{2}{1-a}$+(2a-5)i,其中a∈R,若m+n可以与任何实数比较大小,求$\overrightarrow{m}$与$\overrightarrow{n}$的数量积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Rt△ABC的顶点分别为A(1,2),B(-1,-2).,C(1,-2),圆E是△ABC的外接圆.
(I)求圆E的方程;
(II)求直线lmx-y-m+1=0被圆E截得的最短弦长及对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为2x+y=0,一个焦点为$(\sqrt{5},0)$,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲授开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示学生的接受能力越强),x表示提出和讲授概念的时间(单位:min),可有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)讲课开始后5min和讲课开始后20min比较,何时学生的注意力更集中?
(2)讲课开始后多少分钟,学生的注意力最集中,能持续多久?
(3)一道数学难题,需要讲解13min,并且要求学生的注意力至少达到55,那么老师能否在学生达到所需状态下讲授完这道题目?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)满足$f(x)=1+f(\frac{1}{2}){log_2}x$,则f(4)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的方程x2=2px,M(2,1)为抛物线C上一点,F为抛物线的焦点.
( I)求|MF|;
( II)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案