精英家教网 > 高中数学 > 题目详情
18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,则C=(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

分析 利用正弦定理列出关系式,把各自的值代入求出C即可.

解答 解:∵在△ABC中,A=$\frac{π}{6}$,BC=$\frac{4\sqrt{3}}{3}$,AB=4,
∴由正弦定理$\frac{BC}{sinA}$=$\frac{AB}{sinC}$得:sinC=$\frac{ABsinA}{BC}$=$\frac{4×\frac{1}{2}}{\frac{4\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{2}$,
则C=$\frac{π}{3}$或$\frac{2π}{3}$,
故选:C.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若∠BAC=60°,AB=5,AC=6,则△ABC的面积S=$\frac{15\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,以C(1,1)为圆心的圆与x轴和y轴分别相切于A,B两点,点M,N分别在线段OA,OB上,若,MN与圆C相切,则|MN|的最小值为(  )
A.1B.$2-\sqrt{2}$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出定义:如果函数f(x)在区间[a,b]上可导,其导函数为f'(x),且?x1,x2∈(a,b),当x1≠x2时总满足:f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(a)-f(b)}{a-b}$,则称实数x1,x2为[a,b]上的“希望数”,函数f(x)为[a,b]上的“希望函数”.如果函数f(x)=$\frac{1}{3}$x3-x2+k是[0,k]上的“希望函数”,那么实数k的取值范围是(  )
A.($\frac{3}{2}$,3)B.(2,3)C.($\frac{3}{2}$,2$\sqrt{3}$)D.(2,2$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:8${\;}^{\frac{2}{3}}$×16${\;}^{-\frac{1}{2}}$+10lg3+lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\vec a,\vec b$满足|$\vec a|=1$,|$\vec b|=2$,且$(\vec a+\vec b)⊥\vec a$,则$\vec a$与$\vec b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{3}$sinxcosx-cos2x
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正四棱锥的侧棱与底面成60°角,则此四棱锥的底边与不相邻的侧棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x∈R,都有|sinx|<1”的否定是(  )
A.?x∈R,都有|sinx|>1B.?x∈R,都有|sinx|≥1C.?x∈R,使|sinx|>1D.?x∈R,使|sinx|≥1

查看答案和解析>>

同步练习册答案