精英家教网 > 高中数学 > 题目详情
13.计算:8${\;}^{\frac{2}{3}}$×16${\;}^{-\frac{1}{2}}$+10lg3+lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$.

分析 利用指数幂与对数的运算性质即可得出.

解答 解:原式=22×${2}^{4×(-\frac{1}{2})}$+3+$lg\sqrt{\frac{3}{5}}×\sqrt{\frac{5}{3}}$
=4×$\frac{1}{4}$+3+lg1
=4.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),左右焦点为F1、F2,右顶点为A,上顶点为B,且|AB|=$\frac{{\sqrt{7}}}{2}$|F1F2|.
(1)求椭圆E的方程;
(2)直线l:y=-x+m与椭圆E交于C、D两点,与以F1、F2为直径的圆交于M、N两点,且$\frac{{\sqrt{7}|CD|}}{|MN|}$=$\frac{36}{7}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.由曲线y=x 2-1,直线x=0,x=2和x轴围成的封闭图形的面积(如图)可表示为(  )
A.${∫}_{0}^{2}$(x 2-1)dxB.${∫}_{0}^{2}$|(x 2-1)|dx
C.|${∫}_{0}^{2}$(x 2-1)dx|D.${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设直线l与x轴,y轴分别交于A,B两点,点P是圆C上任一点,求A,B两点的极坐标和△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,则C=(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)是定义在R上图形关于y轴对称,且在[0,+∞)上是减函数,下列不等式一定成立的是(  )
A.f[${\frac{2}{{2-{a^2}}}}$]<f(${{a^2}-2a+\frac{5}{4}}$)B.f[-cos60°]<f(tan30°)
C.f[-(cos60°)2]≥f(${{a^2}-2a+\frac{5}{4}}$)D.f[-sin45°]>f(-3a+2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Rt△ABC的顶点分别为A(1,2),B(-1,-2).,C(1,-2),圆E是△ABC的外接圆.
(I)求圆E的方程;
(II)求直线lmx-y-m+1=0被圆E截得的最短弦长及对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设△ABC的三个内角A、B、C的对边分别为a、b、c,且asinAsinB+bcos2A=$\sqrt{2}$a,则角A的取值范围为(0,$\frac{π}{4}$].

查看答案和解析>>

同步练习册答案