分析 利用正弦定理化简已知的等式,整理后利用同角三角函数间的基本关系化简,得到sinB=2sinA,再利用正弦定理化简得:b=2a,由余弦定理表示出cosA,整理后利用基本不等式求出cosA的范围,再由A为三角形的内角,且根据余弦函数的单调性,即可得到A的范围.
解答 解:在△ABC中,由正弦定理化简已知的等式得:sin2AsinB+sinBcos2A=$\sqrt{2}$sinA,
即sinB(sin2A+cos2A)=$\sqrt{2}$sinA,
∴sinB=$\sqrt{2}$sinA,
由正弦定理得:b=$\sqrt{2}$a,
由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2{a}^{2}+{c}^{2}-{a}^{2}}{2\sqrt{2}ac}$=$\frac{{a}^{2}+{c}^{2}}{2\sqrt{2}ac}$≥$\frac{2ac}{2\sqrt{2}ac}$=$\frac{\sqrt{2}}{2}$,
∵A为三角形ABC的内角,且y=cosx在(0,π)上是减函数,
∴0<A≤$\frac{π}{4}$,
则A的取值范围是:(0,$\frac{π}{4}$].
故答案为:(0,$\frac{π}{4}$].
点评 此题考查了正弦、余弦定理,同角三角函数间的基本关系,基本不等式,以及余弦函数的单调性,熟练掌握定理是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-1,1) | C. | (-1,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 对附中的看法 | 非常好,附中推行素质教育,身心得以全面发展 | 很好,我的高中生活很快乐很充实 |
| A班人数比例 | $\frac{3}{4}$ | $\frac{1}{4}$ |
| B班人数比例 | $\frac{2}{3}$ | $\frac{1}{3}$ |
| C班人数比例 | $\frac{1}{2}$ | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,都有|sinx|>1 | B. | ?x∈R,都有|sinx|≥1 | C. | ?x∈R,使|sinx|>1 | D. | ?x∈R,使|sinx|≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3π}{4}$ | B. | -$\frac{π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com