精英家教网 > 高中数学 > 题目详情
18.2016年11月21日是附中建校76周年校庆日,为了了解在校同学们对附中的看法,学校进行了调查,从全校所有班级中任选三个班,统计同学们对附中的看法,情况如下表:
对附中的看法非常好,附中推行素质教育,身心得以全面发展很好,我的高中生活很快乐很充实
A班人数比例$\frac{3}{4}$$\frac{1}{4}$
B班人数比例$\frac{2}{3}$$\frac{1}{3}$
C班人数比例$\frac{1}{2}$$\frac{1}{2}$
(1)从这三个班中各选一位同学,求恰好有2人认为附中“非常好”的概率(用比例作为相应概率);
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.

分析 (I)利用相互独立事件与互斥事件的概率计算公式即可得出.
(II)利用超几何分布列的计算公式即可得出.

解答 解:(Ⅰ)记这3位同学恰好有2人认为附中“非常好”的事件为A,
则P(A)=$\frac{1}{2}×\frac{2}{3}×$$(1-\frac{3}{4})$+$\frac{1}{2}×(1-\frac{2}{3})$×$\frac{3}{4}$+$(1-\frac{1}{2})×\frac{2}{3}×\frac{3}{4}$=$\frac{11}{24}$.
(Ⅱ)在B班按照相应比例选取9人,
则认为附中“非常好”的应选取6人,认为附中“很好”的应选取3人,则ξ=0,1,2,3,
且P(ξ=k)=$\frac{{∁}_{6}^{3-k}{∁}_{3}^{k}}{{∁}_{9}^{3}}$(k=0,1,2,3)即可得出.P(ξ=0)=$\frac{1}{84}$,
P(ξ=1)=$\frac{3}{14}$,P(ξ=2)=$\frac{15}{28}$,P(ξ=3)=$\frac{5}{21}$.
则ξ的分布列为:

ξ0123
P$\frac{1}{84}$$\frac{3}{14}$$\frac{15}{28}$$\frac{5}{21}$
则ξ的期望值为:Eξ=0×$\frac{1}{84}$+1×$\frac{3}{14}$+2×$\frac{15}{28}$+3×$\frac{5}{21}$=2.

点评 本题考查了相互独立事件与互斥事件的概率计算公式、超几何分布列的计算公式与数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设直线l与x轴,y轴分别交于A,B两点,点P是圆C上任一点,求A,B两点的极坐标和△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为R,则命题p:“函数f(x)为奇函数”是命题q:“?x0∈R,f(x0)=-f(-x0)”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.$\root{3}{-a}•\root{6}{a}$=(  )
A.$-\sqrt{a}$B.$-\sqrt{-a}$C.$\sqrt{-a}$D.$\sqrt{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=logax+x-3(a>0且a≠1)有两个零点x1,x2,且x1<x2,若x2∈(3,4),则实数a的取值范围是(  )
A.$(0,\frac{1}{4})$B.$(\frac{1}{4},1)$C.(1,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设△ABC的三个内角A、B、C的对边分别为a、b、c,且asinAsinB+bcos2A=$\sqrt{2}$a,则角A的取值范围为(0,$\frac{π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=4${\;}^{{a}_{n}}$,求证:$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}$+..+$\frac{1}{{b}_{n}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为:ρ2-4$\sqrt{2}ρcos({θ-\frac{π}{4}})+7=0$.
(Ⅰ)将极坐标方程化为普通方程;
(Ⅱ)若点P(x,y)在圆C上,求x+$\sqrt{3}$y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
x24568
y3040605070
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.

查看答案和解析>>

同步练习册答案