精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设直线l与x轴,y轴分别交于A,B两点,点P是圆C上任一点,求A,B两点的极坐标和△PAB面积的最小值.

分析 (1)由圆C的参数方程消去t得到圆C的普通方程,由直线l的极坐标方程,利用两角和与差的余弦函数公式化简,根据x=ρcosθ,y=ρsinθ转化为直角坐标方程即可;
(2)直线l与x轴,y轴的交点为A(0,2),B(-2,0),化为极坐标,并求出|AB|的长,根据P在圆C上,设出P坐标,利用点到直线的距离公式表示出P到直线l的距离,利用余弦函数的值域确定出最小值,即可确定出三角形PAB面积的最小值.

解答 解:(1)由$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t为参数),消去参数t,得圆C的普通方程(x+5)2+(y-3)2=2.
由$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1,得ρcosθ-ρsinθ=-2,
所以直线l的直角坐标方程为x-y+2=0.
(2)直线l与x轴,y轴的交点为A(0,2),B(-2,0),化为极坐标为A(2,π),B(2,$\frac{π}{2}$),
设P点的坐标为(-5+$\sqrt{2}$cost,3+$\sqrt{2}$sint),
∴P点到直线l的距离为d=$\frac{|-5+\sqrt{2}cost-3-\sqrt{2}sint+2|}{\sqrt{2}}$=$\frac{|-6+2cos(t+\frac{π}{4})|}{\sqrt{2}}$
∴dmin=2$\sqrt{2}$,
∵|AB|=2$\sqrt{2}$,
则△PAB面积的最小值是S=$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}$=4.

点评 此题考查了圆的参数方程,以及简单曲线的极坐标方程,熟练掌握参数方程与普通方程间的转换是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知p:y=ax(a>0,且a≠1)在R上为增函数,q:直线3x+4y+a=0与圆x2+y2=1相交.若p真q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P,Q分别在BD,AD上,
则AP+PQ的最小值为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=a(x-1)lnx+1(a∈R).
(1)讨论函数f(x)的单调性;
(2)若x∈(1,+∞),f(x)>x-alnx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求适合下列条件的圆锥曲线的标准方程.
(1)与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有公共焦点,且离心率为2的双曲线;
(2)中心在坐标原点,经过点A(2,3),且点F(2,0)为其右焦点的椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:8${\;}^{\frac{2}{3}}$×16${\;}^{-\frac{1}{2}}$+10lg3+lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面向量$\overrightarrow{a}$,$\overrightarrow{b}$共线的充要条件是(  )
A.$\overrightarrow{a}$,$\overrightarrow{b}$方向相同
B.$\overrightarrow{a}$,$\overrightarrow{b}$两向量中至少有一个为零向量
C.?λ∈R,$\overrightarrow{b}$=λ$\overrightarrow{a}$
D.存在不全为零的实数λ1,λ2,λ1$\overrightarrow{a}$+λ2$\overrightarrow{b}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A={x|$\frac{1}{2}$<x<5,x∈Z},B={x|x≥a}.若A⊆B,则实数a的取值范围是(  )
A.a<$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2016年11月21日是附中建校76周年校庆日,为了了解在校同学们对附中的看法,学校进行了调查,从全校所有班级中任选三个班,统计同学们对附中的看法,情况如下表:
对附中的看法非常好,附中推行素质教育,身心得以全面发展很好,我的高中生活很快乐很充实
A班人数比例$\frac{3}{4}$$\frac{1}{4}$
B班人数比例$\frac{2}{3}$$\frac{1}{3}$
C班人数比例$\frac{1}{2}$$\frac{1}{2}$
(1)从这三个班中各选一位同学,求恰好有2人认为附中“非常好”的概率(用比例作为相应概率);
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案