精英家教网 > 高中数学 > 题目详情
17.设A={x|$\frac{1}{2}$<x<5,x∈Z},B={x|x≥a}.若A⊆B,则实数a的取值范围是(  )
A.a<$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a≤1D.a<1

分析 A={x|$\frac{1}{2}$<x<5,x∈Z}={1,2,3,4},利用B={x|x≥a},A⊆B,求出实数a的取值范围.

解答 解:A={x|$\frac{1}{2}$<x<5,x∈Z}={1,2,3,4},
∵B={x|x≥a},A⊆B,
∴a≤1,
故选C.

点评 本题考查集合的关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=x-$\frac{1}{2}$x2
(Ⅰ)若点P是函数f(x)=lnx上任意一点,求点P到直线y=x+1的最小距离;
(Ⅱ)当x>e时,求证函数f(x)=lnx的图象位g(x)=x-$\frac{1}{2}$x2图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设直线l与x轴,y轴分别交于A,B两点,点P是圆C上任一点,求A,B两点的极坐标和△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)是定义在R上图形关于y轴对称,且在[0,+∞)上是减函数,下列不等式一定成立的是(  )
A.f[${\frac{2}{{2-{a^2}}}}$]<f(${{a^2}-2a+\frac{5}{4}}$)B.f[-cos60°]<f(tan30°)
C.f[-(cos60°)2]≥f(${{a^2}-2a+\frac{5}{4}}$)D.f[-sin45°]>f(-3a+2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-alnx(a∈R).
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=1时,设函数h(x)=f(x)+$\frac{1+a}{x}$,求函数h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Rt△ABC的顶点分别为A(1,2),B(-1,-2).,C(1,-2),圆E是△ABC的外接圆.
(I)求圆E的方程;
(II)求直线lmx-y-m+1=0被圆E截得的最短弦长及对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为R,则命题p:“函数f(x)为奇函数”是命题q:“?x0∈R,f(x0)=-f(-x0)”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.$\root{3}{-a}•\root{6}{a}$=(  )
A.$-\sqrt{a}$B.$-\sqrt{-a}$C.$\sqrt{-a}$D.$\sqrt{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为:ρ2-4$\sqrt{2}ρcos({θ-\frac{π}{4}})+7=0$.
(Ⅰ)将极坐标方程化为普通方程;
(Ⅱ)若点P(x,y)在圆C上,求x+$\sqrt{3}$y的取值范围.

查看答案和解析>>

同步练习册答案