| A. | $\overrightarrow{a}$,$\overrightarrow{b}$方向相同 | |
| B. | $\overrightarrow{a}$,$\overrightarrow{b}$两向量中至少有一个为零向量 | |
| C. | ?λ∈R,$\overrightarrow{b}$=λ$\overrightarrow{a}$ | |
| D. | 存在不全为零的实数λ1,λ2,λ1$\overrightarrow{a}$+λ2$\overrightarrow{b}$=$\overrightarrow{0}$ |
分析 分别对A、B、C、D各个选项判断即可.
解答 解:对于A:$\overrightarrow{a}$,$\overrightarrow{b}$共线不一定同向;
对于B:$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量也可以共线;
对于C:当$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$≠$\overrightarrow{0}$时$\overrightarrow{b}$=λ$\overrightarrow{a}$不成立,
故选:D.
点评 本题给出两个向量$\overrightarrow{a}$、$\overrightarrow{b}$,叫我们探求$\overrightarrow{a}$、$\overrightarrow{b}$共线的充要条件,着重考查了零向量的性质和数乘向量的定义等知识,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f[${\frac{2}{{2-{a^2}}}}$]<f(${{a^2}-2a+\frac{5}{4}}$) | B. | f[-cos60°]<f(tan30°) | ||
| C. | f[-(cos60°)2]≥f(${{a^2}-2a+\frac{5}{4}}$) | D. | f[-sin45°]>f(-3a+2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com