精英家教网 > 高中数学 > 题目详情
6.阅读如图所示的程序框图,运行相应的程序,则输出的结果是0;

分析 根据题中的流程图,模拟运行,依次根据条件计算s和n的值,直到n>2016运行结束,输出此时的s的值即为答案.

解答 解:根据题中的流程图,模拟运行如下:
输入s=0,n=1,此时n≤2013,符合条件,
∴s=0+sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,n=2,此时n≤2013,符合条件,
∴s=$\frac{\sqrt{3}}{2}$+sin$\frac{2π}{3}$=$\sqrt{3}$,n=3,此时n≤2013,符合条件,
∴s=$\sqrt{3}$+sinπ=$\sqrt{3}$,n=4,此时n≤2013,符合条件,
∴s=$\sqrt{3}$+sin$\frac{4π}{3}$=$\frac{\sqrt{3}}{2}$,n=5,此时n≤2013,符合条件,
∴s=$\frac{\sqrt{3}}{2}$+sin$\frac{5π}{3}$=0,n=6,此时n≤2013,符合条件,
∴s=0+sin2π=0,n=7,此时n≤2013,符合条件,
∴s=0+sin$\frac{7π}{3}$=$\frac{\sqrt{3}}{2}$,n=8,此时n≤2013,符合条件,

通过运行即可发现运行中的s的值具有周期性,周期为6,2016=6×336,
∴s=0,n=2017,此时n>2016,不符合条件,
结束运行,输出s=0.
故答案为:0.

点评 本题考查了程序框图.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,要按照流程图中的运行顺序进行求解是关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若(x-$\frac{a}{x}$)6展开式的常数项为20,则常数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且对?x∈R,有f(x)≤f($\frac{π}{3}$)成立,则f(x)的一个对称中心坐标是(  )
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,底面ABCD是菱形,∠ADC=60°,面PCD⊥面ABCD,PC=PD=CD=2,点M为线段PB上异于P、B的点.
(Ⅰ)当点M为PB的中点时,求证:PD∥平面ACM
(Ⅱ)当二面角B-AC-M的余弦值为$\frac{\sqrt{5}}{5}$时,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正方体ABCD-A1B1C1D1,点E为棱AA1的中点,则异面直线B1D1与DE所成角的大小是arccos$\frac{\sqrt{10}}{5}$(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A为左顶点,B为短轴端点,F为右焦点,且AB⊥BF,则椭圆的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点分别为A,B,右焦点为F,离心率$e=\frac{1}{2}$,点P是椭圆C上异于A,B两点的动点,△APB的面积最大值为$2\sqrt{3}$.
(1)求椭圆C的方程;
(2)若直线AP与直线x=2交于点D,试判断以BD为直径的圆与直线PF的位置关系,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点为A(0,1),离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点A作圆M:(x+1)2+y2=r2(0<r<1)的两条切线分别与椭圆C相交于点B,D(不同于点A).当r变化时,试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2-2x-8≤0},集合N={x|lgx≥0},则M∩N=(  )
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

同步练习册答案