精英家教网 > 高中数学 > 题目详情

【题目】如图,棱锥的地面是矩形, 平面,,.

(1)求证: 平面;

(2)求二面角的大小;

【答案】1)详见解析;(2

【解析】

试题(1)利用空间向量证明线面垂直,即证平面的一个法向量为 ,先根据条件建立恰当直角坐标系,设立各点坐标,利用向量数量积证明为平面的一个法向量,最后根据线面垂直判定定理得结论(2)利用空间向量求二面角,先利用解方程组的方法求出平面法向量,利用向量数量积求出两法向量夹角,最后根据二面角与法向量夹角关系确定二面角大小

试题解析:证:(1)建立如图所示的直角坐标系,

则A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=

∴AB=2.∴B(2,0,0)、C(2,2,0),

,即BD⊥AP,BD⊥AC,又AP∩AC=A,∴BD⊥平面PAC.

(2)由(1)得.

设平面PCD的法向量为,则

,∴故平面PCD的法向量可取为

∵PA⊥平面ABCD,∴为平面ABCD的法向量.

设二面角P—CD—B的大小为q,依题意可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.

1)求抛物线的方程;

2)过点作直线交抛物线于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

直角坐标系中曲线的参数方程为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 点的极坐标,在平面直角坐标系中,直线经过点,倾斜角为

(1)写出曲线的直角坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).

(1)试求抛物线的方程;

(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.

①求证:直线恒过定点;

②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,直线l的参数方程为为参数),曲线的方程为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线的极坐标方程;

2)曲线分别交直线和曲线于点,求的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)对于任意恒成立,求的取值范围;

3)试讨论函数的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点

1)若点的坐标为,求的值;

2)设线段的中点为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案