| A. | -2014 | B. | -2015 | C. | -2016 | D. | -2017 |
分析 推导出函数f(x)=1+$\frac{2x}{{x}^{2}+1}$+$\frac{cosx[-ln(\sqrt{1+9{x}^{2}}+3x)]}{{x}^{2}+1}$,令h(x)=$\frac{2x}{{x}^{2}+1}+\frac{cosln(\sqrt{1+9{x}^{2}}-3x)}{{x}^{2}+1}$,则h(x)是奇函数,由此能求出结果.
解答 解:∵函数f(x)=$\frac{{{{({x+1})}^2}+ln({\sqrt{1+9{x^2}}-3x})cosx}}{{{x^2}+1}}$,
=1+$\frac{2x}{{x}^{2}+1}$+$\frac{(ln\frac{1}{\sqrt{1+9{x}^{2}+3x}})•cosx}{{x}^{2}+1}$
=1+$\frac{2x}{{x}^{2}+1}$+$\frac{cosx[-ln(\sqrt{1+9{x}^{2}}+3x)]}{{x}^{2}+1}$,
令h(x)=$\frac{2x}{{x}^{2}+1}+\frac{cosln(\sqrt{1+9{x}^{2}}-3x)}{{x}^{2}+1}$,
则h(-x)=-$\frac{2x}{{x}^{2}+1}$+$\frac{cosx[-ln(\sqrt{1+9{x}^{2}}-3x)]}{{x}^{2}+1}$=-h(x),
即h(x)是奇函数,
∵f(2017)=1+h(2017)=2016,∴h(2017)=2016-1=2015,
∴f(-2017)=1+h(-2017)=1-h(2017)=1-2015=-2014.
故选:A.
点评 本题考查函数的奇偶性、函数值求法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2 | B. | y=sinx | C. | $y=\frac{1}{{{x^2}+1}}$ | D. | $y=\sqrt{1-{x^2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>0} | B. | {x|x≥-1} | C. | {x|0<x≤1} | D. | {x|-1≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com