精英家教网 > 高中数学 > 题目详情
7.三棱锥P-ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是(0,$\frac{4}{3}$]

分析 利用基本不等式求出AP•AC的范围,得出△PAC的面积的范围,代入棱锥的体积公式得出答案.

解答 解:∵AP+AC=4,
∴AP•AC≤($\frac{AP+AC}{2}$)2=4,
设∠PAC=θ,则0<θ<π,
∴S△PAC=$\frac{1}{2}$AP•AC•sinθ≤2sinθ≤2,
∴0<S△PAC≤2.
∵AB⊥AC,AB⊥AP,
∴AB⊥平面PAC,
∴V=$\frac{1}{3}$S△PAC•AB=$\frac{2}{3}$S△PAC
∴0<V≤$\frac{4}{3}$.
故答案为:$(0,\frac{4}{3}]$.

点评 本题考查了棱锥的体积计算,线面垂直的判定定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{{{{({x+1})}^2}+ln({\sqrt{1+9{x^2}}-3x})cosx}}{{{x^2}+1}}$,且f(2017)=2016,则f(-2017)=(  )
A.-2014B.-2015C.-2016D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若对圆(x-1)2+(y-1)2=1上任意一点P(x,y),|3x-4y+a|+|3x-4y-9|的取值与x,y无关,则实数a的取值范围是(  )
A.a≤-4B.-4≤a≤6C.a≤-4或a≥6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的方程为(x-2)2+y2=4,直线l的方程为x+$\sqrt{3}$y-12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)分别写出曲线C与直线l的极坐标方程;
(Ⅱ)在极坐标中,极角为θ(θ∈(0,$\frac{π}{2}$))的射线m与曲线C,直线l分别交于A、B两点(A异于极点O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷非古文迷合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ+2\end{array}$(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sinθ+cosθ=$\frac{1}{ρ}$.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,多面体ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M为BC的中点.
(Ⅰ)若N是棱AE上的动点,求证:DE⊥MN;
(Ⅱ)若平面ADE与平面ABC所成锐二面角为60°,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{2sinx}{{1+\frac{1}{x^2}}}(x∈[-\frac{3π}{4},0)∪(0,\frac{3π}{4}])$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案