精英家教网 > 高中数学 > 题目详情
4.下列函数中,值域为[0,1]的是(  )
A.y=x2B.y=sinxC.$y=\frac{1}{{{x^2}+1}}$D.$y=\sqrt{1-{x^2}}$

分析 分别求出函数的值域,即可得到答案

解答 解:y=x2的值域为[0,+∞),
y=sinx的值域为[-1,1],
y=$\frac{1}{{x}^{2}+1}$值域为[(0,1],
y=$\sqrt{1-{x}^{2}}$的值域为[0,1],
故选:D.

点评 本题考查了函数值域的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知双曲线Γ:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的上焦点为F1(0,c)(c>0),下焦点为F2(0,-c)(c>0),过点F1作圆x2+y2-$\frac{2c}{3}y+\frac{a^2}{9}$=0的切线与圆相切于点D,与双曲线下支交于点M,若MF2⊥MF1,则双曲线Γ的渐进线方程为(  )
A.4x±y=0B.x±4y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β∈(0,π),且$f(β)=2cos(β-\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos({\frac{2}{3}π-2θ})=-\frac{7}{9}$,则$sin({\frac{π}{6}+θ})$的值等于(  )
A.$\frac{1}{3}$B.$±\frac{1}{3}$C.$-\frac{1}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是首项为1,公差为2的等差数列,{bn}是首项为1,公比为q的等比数列.记cn=an+bn,n=1,2,3,….
(1)若{cn}是等差数列,求q的值;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{{{{({x+1})}^2}+ln({\sqrt{1+9{x^2}}-3x})cosx}}{{{x^2}+1}}$,且f(2017)=2016,则f(-2017)=(  )
A.-2014B.-2015C.-2016D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若对圆(x-1)2+(y-1)2=1上任意一点P(x,y),|3x-4y+a|+|3x-4y-9|的取值与x,y无关,则实数a的取值范围是(  )
A.a≤-4B.-4≤a≤6C.a≤-4或a≥6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,多面体ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M为BC的中点.
(Ⅰ)若N是棱AE上的动点,求证:DE⊥MN;
(Ⅱ)若平面ADE与平面ABC所成锐二面角为60°,求棱AB的长.

查看答案和解析>>

同步练习册答案