精英家教网 > 高中数学 > 题目详情
8.设数列{an}满足:a1=1,an+1=an+2,n∈N*,数列{bn}为等比数列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设an•(1+2log3bn)•cn=1,求数列{cn}的前n项和Tn

分析 (I)利用等差数列的通项公式可得an.由于数列{bn}为等比数列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.分别令n=1,2,再利用等比数列的通项公式即可得出.
(Ⅱ)由于(an+1)•log3bn+2•cn=2n(n+2)•cn=1,可得cn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),再利用“裂项求和”方法即可得出.

解答 解:(Ⅰ)∵an+1=an+2,n∈N*,a1=1,
∴{an}是1为首项,2为公差的等差数列.
∴an=2n-1.                                          …(3分)
∵a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3,
∴a1b1=3,a1b1+a2b2=30,
解得b1=3,b2=9.
∴{bn}的通项公式为bn=3n.                            …(7分)
(Ⅱ)∴an•(1+2log3bn)•cn=(2n-1)•(2n+1)•cn=1,
∴cn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)             …(10分)
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$)+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.                         …(13分)

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某家庭打算在2022年的年底花a万元购一套商品房,为此,计划从2016年初开始,每年年初存入一笔购房专用存款,使这笔款到2022年底连本带息共同a万元,如果每年的存款数额相同,依年利息p并按复利计算,则每年应存入x=$\frac{a}{{(1+p)}^{6}}$万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用反证法证明某命题时,对其结论:“自然数a、b、c中恰有一个奇数”正确的反设为(  )
A.a、b、c都是奇数
B.a、b、c都是偶数
C.a、b、c中至少有两个奇数
D.a、b、c中至少有两个奇数或都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC内接于圆O,过B点的切线为BE,∠CBE的角平分线交圆O于点D,连接AD交BC于F,延长交BE于E.
(Ⅰ)证明:AD平分∠BAC;
(Ⅱ)证明:BD2-DF2=BF•CF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}的首项a1=-5,它的前11项的平均值为5,若从中抽去一项,余下的10项的平均值为4.6,则抽去的是(  )
A.a6B.a8C.a9D.a10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设数列{an}的前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且a2=-2,则a7=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式组$\left\{{\begin{array}{l}{x+3y-4≥0}\\{3x+y-4≤0}\\{x≥0}\end{array}}\right.$所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,则k的值是(  )
A.$\frac{3}{7}$B.$\frac{7}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{2i}{1-i}$(i为虚数单位),z的共轭复数为$\overline{z}$,则$z+\overline{z}$=(  )
A.2iB.-2iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设各项均为正数的数列{an}的前n项之积为Tn,若T=${2}^{{n}^{2}-n}$,则数列{$\frac{{a}_{n}+63}{{2}^{n-1}}$}中最小项的序号n=4.

查看答案和解析>>

同步练习册答案