精英家教网 > 高中数学 > 题目详情
16.如图,△ABC内接于圆O,过B点的切线为BE,∠CBE的角平分线交圆O于点D,连接AD交BC于F,延长交BE于E.
(Ⅰ)证明:AD平分∠BAC;
(Ⅱ)证明:BD2-DF2=BF•CF.

分析 (Ⅰ)证明AD是∠BAC的平分线,只需证明∠CAD=∠BAD,利用BE是圆O的切线,BD是∠CBE的平分线即可证明;
(Ⅱ)先证明△BDA∽△FDB,可得$\frac{AD}{BD}=\frac{BD}{FD}$,即BD2=AD•FD,再结合相交弦定理,即可证明结论.

解答 证明:(Ⅰ)∵BE是圆O的切线,
∴∠EBD=∠BAD=∠BCD,
∵BD是∠CBE的平分线,
∴∠CBD=∠BAD,
∴∠CAD=∠CBD=∠BAD,
∴AD是∠BAC的平分线,即AD平分∠BAC;
(Ⅱ)∵∠CAD=∠BAD,∠CAD=∠FBD,
∴∠BAD=∠FBD,
∵∠BDA=∠FDB,
∴△BDA∽△FDB,
∴$\frac{AD}{BD}=\frac{BD}{FD}$,
∴BD2=AD•FD,
∴BD2-DF2=AD•FD-DF2=AF•FD
∵AF•FD=BF•CF,
∴BD2-DF2=BF•CF.

点评 本题考查与圆有关的比例线段,考查三角形相似的判断与运用,难度中等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设正整数n≥2,对2×n格点链中的2n个结点用红(R)、黄(Y)、蓝(B)三种颜色染色,左右端点中的三个结点己经染好色,如图所示.若对剩余的2n-3个结点,要求每个结点恰染-种颜色,相邻结点异色,求不同的染色方法数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题:
①若$α+β=\frac{7π}{4}$,则(1-tanα)•(1-tanβ)=2;
②已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ<1;
③已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,λ∈(0,+∞),则P的轨迹一定通过△ABC的重心;
④在△ABC中,∠A=60°,边长a,c分别为$a=4,c=3\sqrt{3}$,则△ABC只有一解;
⑤如果△ABC内接于半径为R的圆,且$2R({sin^2}A-{sin^2}C)=(\sqrt{2}a-b)sinB$,则△ABC的面积的最大值$\frac{{\sqrt{2}+1}}{2}{R^2}$;
其中真命题的序号为①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为迎接2016年“猴”年的到来,某电视台举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,每题只有一个选项是正确的,正确回答问题A可获奖金1千元,正确回答问题B可获奖金2千元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设某参与者在回答问题前,选择每道题的每个选项的机会是等可能的.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金1千元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}•\overrightarrow{b}$=4,|$\overrightarrow{a}$-$\overrightarrow{b}$|=3,则|$\overrightarrow{a}$|的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设Sn为数列{an}的前n项和,且Sn=n2,数列{bn}为等比数列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设(an+1)•log3bn+2•cn=1,求证:数列{cn}的前n项和Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足:a1=1,an+1=an+2,n∈N*,数列{bn}为等比数列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设an•(1+2log3bn)•cn=1,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,当0≤m<n<3时,有f(m)=f(n),则nf(m)的取值范围是(  )
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三个零点,则实数b的取值范围是(  )
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

同步练习册答案