精英家教网 > 高中数学 > 题目详情
12.①已知:3Sn=2an+1,求an
②a1=1,an+1=2an+4,求an

分析 ①通过3Sn=2an+1,利用an+1=Sn+1-Sn可得$\frac{{a}_{n+1}}{{a}_{n}}$=-2,结合3a1=2a1+1计算可得结论;
②通过对an+1=2an+4变形可得数列{an+4}是以2为公比的等比数列,利用a1=1计算即得结论.

解答 解:①∵3Sn=2an+1,
∴an+1=Sn+1-Sn=($\frac{2}{3}$an+1+1)-($\frac{2}{3}$an+1),
化简得:$\frac{{a}_{n+1}}{{a}_{n}}$=-2,
又∵3a1=2a1+1,即a1=1,
∴an=a1•(-2)n-1=(-2)n-1
②∵an+1=2an+4,
∴an+1+4=2(an+4),
即数列{an+4}是以2为公比的等比数列,
又∵a1=1,∴a1+4=5,
∴an+4=5×2n-1
∴an=5×2n-1-4.

点评 本题考查求通项公式,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A(0,4)和准线l的距离相等的点的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0,0<φ<π),若f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上具有单调性,且f($\frac{π}{6}$)=-f($\frac{π}{3}$)=-f($\frac{π}{2}$),则f(π)的值为(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan(2π-α)=-2,求$\frac{1}{sinα+1}$-$\frac{1}{sinα-1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,顶点B、C的坐标分别为(0,-2),(0,2),其周长为12,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是(  )
A.0.26B.0.08C.0.18D.0.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将4份文件放入3个盒子中,随机变量X表示盒子中恰有文件的盒子个球,则E(X)=$\frac{65}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在曲线$\left\{\begin{array}{l}{x=tanθ-1}\\{y=\frac{1}{tanθ}}\end{array}\right.$(θ为参数)上求一点P,使它到直线x+2y+3=0的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,F1,F2分别为椭圆左右焦点,A为椭圆的短轴端点且|AF1|=$\sqrt{6}$
(1)求椭圆C的方程;
(2)过F2作直线l角椭圆C于P,Q两点,求△PQF1的面积的最大值.

查看答案和解析>>

同步练习册答案