精英家教网 > 高中数学 > 题目详情
8.把下列参数方程化为普通方程,并说明他们各表示什么曲线:
(1)$\left\{\begin{array}{l}x=1-3t\\ y=4t\end{array}$(t为参数)
(2)$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ为参数).

分析 (1)$\left\{\begin{array}{l}x=1-3t\\ y=4t\end{array}$(t为参数),消去参数t,能求出普通方程及其表示的曲线类型.
(2)$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ为参数),消去参数θ,能求出普通方程及其表示的曲线类型.

解答 解:(1)∵$\left\{\begin{array}{l}x=1-3t\\ y=4t\end{array}$(t为参数),
∴消去参数t,得普通方程为4x+3y-4=0,表示直线.
(2)∵$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ为参数),
∴消去参数θ,得普通方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$,表示椭圆.

点评 本题考查参数方程化为普通方程的求法及曲线类型的判断,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a+lnx}{x-1}$(x>1)
(1)当a=1时,求函数f(x)的单调递减区间;
(2)当a=0时,判断函数f(x)的单调性;
(3)当x>1时,证明:$\frac{lnx}{x-1}$>$\frac{ln({e}^{x}-1)}{{e}^{x}-2}$(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b,c为正实数,且a+b≤6c,$\frac{2}{a}$+$\frac{3}{b}$≤$\frac{2}{c}$,则$\frac{3a+8b}{c}$的取值范围为(0,48).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程:$\left\{\begin{array}{l}x=t\\ y=1+2t\end{array}$(t为参数)和圆C的极坐标方程:ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).P(0,1)
(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(2)判断直线l和圆C的位置关系,若相交于两点A、B,求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各式正确的是(  )
A.arctan(-1)=$\frac{3π}{4}$B.arctan($\frac{1}{2}$)=$\frac{π}{6}$C.arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$D.arccos(-$\frac{1}{2}$)=-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为迎接春节,某工厂大批生产小孩具--拼图,工厂为了规定工时定额,需要确定加工拼图所花费的时间,为此进行了10次试验,测得的数据如下:
拼图数x/个102030405060708090100
加工时间y/分钟626875818995102108115122
(1)画出散点图,并判断y与x是否具有线性相关关系;

(2)求回归方程;
(3)根据求出的回归方程,预测加工2010个拼图需要用多少小时?(精确到0.1)
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y})}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}$$,\hat a=\bar y-\hat b\bar x$.
参考数据合计
x102030405060708090100550
y626875818995102108115122917
xi21004009001600250036004900640081001000038500
xiyi6201360225032404450570071408840103501220055950

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x)满足:①f(-x)=-f(x);②f(2x)=af(x)(a>0);③当2≤x≤4时,$f(x)=|sin\frac{π}{2}x|$,若分别以函数f(x)的极值点和相应极值为横、纵坐标的点都在一条直线上,则a的值为(  )
A.1B.2C.1或2D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,M是线段AB的中点,$\overrightarrow{AN}=\frac{1}{2}\overrightarrow{NC}$,BN与CM相交于点E,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,
(1)用基底$\vec a$,$\vec b$表示$\overrightarrow{BN}$和$\overrightarrow{CM}$;
(2)用基底$\vec a$,$\vec b$表示$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,点$A(3,\frac{5π}{12})$与点$B(8,\frac{π}{12})$之间的距离等于7.

查看答案和解析>>

同步练习册答案