精英家教网 > 高中数学 > 题目详情
函数的图象可能是
B

试题分析:函数定义域为,且,所以函数为偶函数,图像关于轴对称。由复合函数单调性可知上单调递减,在上单调递增。故B正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数上的奇函数,且
(1)求的值
(2)若,求的值
(3)若关于的不等式上恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax-2,(aR).
(l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是减函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在R上的偶函数,且在上是增函数,则一定有(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数在(6, +∞)上为减函数,且函数y=f(x+6)为偶函数,则(   )
A.f(4)>f(5)B.f(4)>f(7)C.f(5)>f(7)D.f(5)>f(8)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数是定义在上的增函数,函数的图象关于点对称.若实数满足不等式,则的取值范围是   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f=( ).
A.-B.-C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的减函数,那么实数的取值范围是(       )
A.(0,1)B.(0,)C.D.

查看答案和解析>>

同步练习册答案