精英家教网 > 高中数学 > 题目详情
已知f(x)=sinx(cosx-1),则f′(
π4
)
=
 
分析:利用函数乘积的导数运算法则将函数f(x)=sinx(cosx-1)求导,将x=
π
4
代入便求得结果.
解答:解:f′(x)=[sinx(cosx-1)]′
=[cosx(cosx-1)-sin2x]
f′(
π
4
)
=-
2
2

故答案为:-
2
2
点评:本题考查了导数的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )
A、与g(x)的图象相同
B、与g(x)的图象关于y轴对称
C、向左平移
π
2
个单位,得到g(x)的图象
D、向右平移
π
2
个单位,得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,则f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的图象与y=-1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinπx.
(1)设g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)设h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此时x值的集合.

查看答案和解析>>

同步练习册答案