精英家教网 > 高中数学 > 题目详情
14.已知函数f0(x)=xsinx,其中x∈R,记fn(x)为fn-1(x)的导函数,n∈N*
(1)求f1(x),f2(x),f3(x);
(2)猜想fn(x)(n∈N*)的解析式并证明.

分析 (1)根据导数的公式进行求解即可.
(2)根据数学归纳法进行证明即可.

解答 解:(1)${f_1}(x)={f_0}^/(x)=sinx+xcosx$,
${f_2}(x)={f_1}^/(x)=cosx+cosx-xsinx=2cosx-xsinx$,
${f_3}(x)={f_{21}}^/(x)=-2sinx-sinx-xcosx=-3sinx-xcosx$,
(2)归纳:${f_1}(x)=sinx+xcosx=1×sin(x+\frac{1-1}{2}π)+xcos(x+\frac{1-1}{2}π)$,
${f_2}(x)=2cosx-xsinx=2×sin(x+\frac{2-1}{2}π)+xcos(x+\frac{2-1}{2}π)$,
${f_3}(x)=-3sinx-xcosx=3×sin(x+\frac{3-1}{2}π)+xcos(x+\frac{3-1}{2}π)$
猜想:${f_n}(x)=nsin(x+\frac{n-1}{2}π)+xcos(x+\frac{n-1}{2}π)$,n∈N*
证明:①当n=1时,f1(x)=sinx+xcosx,结论成立;   
②假设n=k(k∈N*)时,结论成立,
即${f_k}(x)=ksin(x+\frac{k-1}{2}π)+xcos(x+\frac{k-1}{2}π)$,
当n=k+1时,${f_{k+1}}(x)={f_k}^/(x)=kcos(x+\frac{k-1}{2}π)+cos(x+\frac{k-1}{2}π)-xsin(x+\frac{k-1}{2}π)$=$(k+1)cos(x+\frac{k-1}{2}π)-xsin(x+\frac{k-1}{2}π)$=$(k+1)sin(x+\frac{k-1}{2}π+\frac{π}{2})$+$xcos(x+\frac{k-1}{2}π+\frac{π}{2})$
=$(k+1)sin[{x+\frac{(k+1)-1}{2}π}]$+$xcos[{x+\frac{(k+1)-1}{2}π}]$
所以当n=k+1时,结论也成立
由①②可知,当n∈N*时,${f_n}(x)=nsin(x+\frac{n-1}{2}π)+xcos(x+\frac{n-1}{2}π)$.

点评 本题主要考查导数的运算,以及数学归纳法的证明和应用,考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.对于任意的n∈N*,数列{an}满足$\frac{{a}_{1}-1}{{2}^{1}+1}$+$\frac{{a}_{2}-2}{{2}^{2}+1}$+…+$\frac{{a}_{n}-n}{{2}^{n}+1}$=n+1
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 设数列{an}的前n项和为Sn,求Sn
(Ⅲ) 求证:对于n≥2,$\frac{2}{{a}_{2}}$+$\frac{2}{{a}_{3}}$+…+$\frac{2}{{a}_{n+1}}$<1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点列An(xn,0),n∈N*,其中x1=0,x2=1.A3是线段A1A2的中点,A4是线段A2A3的中点,…,An+2是线段AnAn+1的中点,…设an=xn+1-xn
(Ⅰ)写出xn与xn-1、xn-2(n≥3)之间的关系式并计算a1,a2,a3
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定点A(-1,0),B是圆C:(x-1)2+y2=8(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹Γ方程;
(2)设M、N是Γ上位于x轴上方的两点,且AM∥CN,若|AM|-|CN|=$\frac{3\sqrt{2}}{8}$,求直线AM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点M(1,1)的直线与椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1交于A,B两点,且点M平分弦AB,则直线AB的方程为(  )
A.4x+3y-7=0B.3x+4y-7=0C.3x-4y+1=0D.4x-3y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.我市高三某班(共30人)参加永州市第三次模拟考试,该班班主任将全班的数学成绩以[100,109),[110,119),[120,129),[130,139),[140,150)的方式分组,得到频率分布直方图(如图,纵坐标用分数表示),并将分数在120分或者以上的视为优秀.
(Ⅰ)求x的值,并求该班的优秀率;
(Ⅱ)试利用该直方图估计该班成绩的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P在圆C:x2+y2-8x-6y+21=0上运动,O是坐标原点,求线段OP的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙两名运动员进行2016里约奥运会选拔赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{2}$,各局比赛结果相互独立.
(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;
(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

同步练习册答案