精英家教网 > 高中数学 > 题目详情
2.已知定点A(-1,0),B是圆C:(x-1)2+y2=8(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹Γ方程;
(2)设M、N是Γ上位于x轴上方的两点,且AM∥CN,若|AM|-|CN|=$\frac{3\sqrt{2}}{8}$,求直线AM的方程.

分析 (1)利用椭圆的定义判断点E的轨迹是以A、C为焦点的椭圆,求出a、b的值,即得椭圆的方程;
(2)设AM与CN的方程分别为x+1=my,x-1=my,与椭圆方程联立,求出|AM|、|CN|,根据已知条件|AM|-|CN|=$\frac{3\sqrt{2}}{8}$求得m值,则直线AM的方程可求.

解答 解:(1)由题意得,圆心C(1,0),半径等于2$\sqrt{2}$,|EA|=|EB|
∴|EC|+|EA|=|EC|+|EB|=|CB|=2$\sqrt{2}$>|AC|,
故点E的轨迹是以A、C为焦点的椭圆,
∵2a=2$\sqrt{2}$,c=1,
∴$a=\sqrt{2}$,c=1,则b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
∴椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2))∵椭圆方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$,A(-1,0),C(1,0),
又∵直线AM∥CN,
∴设AM与CN的方程分别为x+1=my,x-1=my
设M(x1,y1),N(x2,y2),y1>0,y2>0,
∴由$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{{x}_{1}+1=m{y}_{1}}\end{array}\right.$,得(m2+2)${{y}_{1}}^{2}$-2my1-1=0.
∴${y}_{1}=\frac{m+\sqrt{2{m}^{2}+2}}{{m}^{2}+2}$,
∴|AM|=$\sqrt{{m}^{2}+1}•|0-{y}_{1}|$=$\frac{\sqrt{2}({m}^{2}+1)+m\sqrt{{m}^{2}+1}}{{m}^{2}+2}$,①
同理|CN|=$\frac{\sqrt{2}({m}^{2}+1)-m\sqrt{{m}^{2}+1}}{{m}^{2}+2}$,②
∵|AM|-|CN|=$\frac{3\sqrt{2}}{8}$,
∴由①②得|AM|-|CN|=$\frac{2m\sqrt{{m}^{2}+1}}{{m}^{2}+2}$=$\frac{3\sqrt{2}}{8}$,解得m2=$\frac{39}{119}$.
由题意可得m>0,∴m=$\frac{39\sqrt{119}}{119}$.
∴直线AM的方程为x-$\frac{39\sqrt{119}}{119}y+1=0$.

点评 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,解题时要注意等价转化思想的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设a,b,c是正实数,且a2+b2+c2+abc=4,证明:a+b+c≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.第47届联合国大会于1993年1月18日通过193号决议,确定自1993年起,每年的3月22日为“世界水日”,依次推动对水资源进行进行综合性统筹规划和管理,加强水资源保护,解决日益严重的水问题.某研究机构为了了解各年龄层的居民对“世界水日”的了解程度,随机抽取了300名年龄在[10,60]的公民进行调查,所得结果统计为如图的频率分布直方图.
(Ⅰ)求抽取的年龄在[30,40)内的居民人数;
(Ⅱ)若按照分层抽样的方法从年龄在[10,20)、[50,60]的居民中抽取6人进行知识普及,并在知识普及后再抽取2人进行测试,求进行测试的居民中至少有1人的年龄在[50,60]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙、丙三名高二学生计划利用今年“五一”三天小长假在附近的五个景点(五个景点分别是:荆州古城、三峡大坝、古隆中、明显陵、西游记公园)每人彼此独立地选三个景点游玩.其中甲同学必选明显陵,不选西游记公园,另从其余中随机任选两个;乙、丙两名同学从五个景点中随机任选三个.
(1)求甲同学选中三峡大坝景点且乙同学未选中三峡大坝景点的概率;
(2)用X表示甲、乙、丙选中三峡大坝景点的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c为正实数,求证:(a2+2)(b2+2)(c2+2)≥3(a+b+c)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.二面角α-l-β的大小为$\frac{π}{4}$,直线AB?α,若AB与l所成的角为$\frac{π}{4}$,则AB与β所成角的正弦值=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f0(x)=xsinx,其中x∈R,记fn(x)为fn-1(x)的导函数,n∈N*
(1)求f1(x),f2(x),f3(x);
(2)猜想fn(x)(n∈N*)的解析式并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有甲、乙两个坛子,每个坛子装有大小相同的2个白球和2个红球,现在从甲坛子中随机取出2个小球再从乙坛子中随机取出2个小球.
(1)求从两个坛子取的球都是红球的概率;
(2)求取出的4个球既含有白球又含有红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用数学归纳法证明:对任意的n∈N*,$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{n}{2n+1}$.

查看答案和解析>>

同步练习册答案