精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a+log2x,且f(a)=1,则函数f(x)的零点为
 
考点:函数零点的判定定理
专题:函数的性质及应用
分析:根据条件求出a,根据函数零点的定义直接求解方程即可.
解答: 解:∵函数f(x)=a+log2x,且f(a)=1,
∴f(a)=a+log2a=1,解得a=1,
∴f(x)=1+log2x,
由f(x)=1+log2x=0,即log2x=-1,解得x=
1
2

故答案为:
1
2
点评:本题主要考查函数零点的求解,根据对数的基本运算,求出a,直接解对数方程是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示.△ABC中,AB>AC,作∠FBC=∠ECB=
1
2
∠A,E,F分别在边AC,AB上.求证:BE=CF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,首项a1=3,且a1、a4、a13成等比数列,设数列{an}的前n项和为Sn(n∈N+).
(1)求an和Sn
(2)若bn=
an(Sn≤3an)
1
Sn
(Sn>3an)
,数列{bn}的前n项和Tn.求证:3≤Tn<24
11
60

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(x-a)2
lnx
(其中a为常数).
(1)当a=0时,求函数的单调区间;
(2)当a=1时,对于任意大于1的实数x,恒有f(x)≥k成立,求实数k的取值范围;
(3)当0<a<1时,设函数f(x)的3个极值点为x1,x2,x3,且x1<x2<x3,求证:x1+x3
2
e

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-1.
(1)判断f(x)的单调性,并用定义法证明;
(2)求f(x)在[0,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
i
j
是夹角为60°的单位向量,关于实数x的方程
i
x2+
j
x+
n
=0有解,则
i
n
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
sinx+(x+1)2
x2+1
的最大值为M,最小值为m,则M+m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|1+lgx|.若a≠b且f(a)=f(b),则a+b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算机的成本不断下降,若每隔5年计算机的价格降低现价格的
1
m
,现在价格5400元的计算机经过15年的价格为
 
元.

查看答案和解析>>

同步练习册答案