精英家教网 > 高中数学 > 题目详情
如图所示.△ABC中,AB>AC,作∠FBC=∠ECB=
1
2
∠A,E,F分别在边AC,AB上.求证:BE=CF.
考点:相似三角形的性质
专题:立体几何
分析:延长ME到P使MP=MF,构造△PMB≌△FMC,得到BP=CF,∠MFC=∠MPB,再根据三角形外交定理,得到∠AEC=∠MFC,继而得到PB=EB,问题得以证明.
解答: 证明:延长ME到P使MP=MF
∵∠FBC=∠ECB=
1
2
∠A,
∴BM=CM,
又∠PMB=∠FMC,
∴△PMB≌△FMC,
∴BP=CF,∠MFC=∠MPB
∴∠FMC=∠FBC+∠ECB=∠A,
∵∠AEC=∠ABC+∠ECB=∠ABM+∠FBC+∠ECB,∠MFC=∠A+∠ABM,
∴∠AEC=∠MFC
∴∠PEB=∠MPB
∴PB=EB
∴BE=CF
点评:本题主要考查了三角形全等以及三角形的外角定理,以及等腰三角形的知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(3,
3
),O是坐标原点,点P(x,y)的坐标满足
3
x-y≤0
x-
3
y+2≥0
y≥0
,设z为
OA
OP
上的投影,则z的取值范围是(  )
A、[-3,3]
B、[-
3
3
]
C、[-
3
,3]
D、[-3,
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体是由底面为ABCD的长方体被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4,若如图所示建立空间直角坐标系:
①求
EF
和点G的坐标;
②求异面直线EF与AD所成的角;
③求点C到截面AEFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
,D是线段AB的垂直平分线上的一点,D到AB的距离为2,过C的曲线E上任一点P满足|
PA
|+|
PB
|为常数.
(1)建立适当的坐标系,并求出曲线E的方程.
(2)过点D的直线l与曲线E相交于不同的两点M,N,且M点在D,N之间,若|
DM
|=λ|
DN
|,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)
分组[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合计
人数12591363140
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计数据落在[150,170]范围内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱台的体对角线是5cm,高是3cm,求它的两条相对侧棱所确定的截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品按质量标准分成五个等级,等级编号x依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
x12345
频率a0.30.35bc
(1)若所抽取的20件产品中,等级编号为4的恰有2件,等级编辑为5的恰有4件,求a,b,c的值.
(2)在(1)的条件下,将等级编辑为4的2件产品记为x1、x2,等级编辑为5的4件产品记为y1,y2,y3,y4,现从x1、x2,y1,y2,y3,y4,这6件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知t∈R,设函数f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上无极值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范围;
(Ⅲ)当t=1时,若f(x)≤xex-5x2+5x-m+2(e为自然对数的底数)对任意x∈[0,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a+log2x,且f(a)=1,则函数f(x)的零点为
 

查看答案和解析>>

同步练习册答案