精英家教网 > 高中数学 > 题目详情
2.已知p:直线y=(2m+1)x+m-2的图象不经过第二象限,q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦点在x轴上的椭圆,若(¬p)∨q为假命题,求实数m的取值范围.

分析 首先分别找到两命题等价的m的范围,然后由(¬p)∨q为假命题,得到p为真命题,q为假命题,即可求m 的范围.

解答 解:p为真⇒$\left\{\begin{array}{l}{2m+1≥0}\\{m-2≤0}\end{array}\right.$⇒$-\frac{1}{2}$≤m≤2; q为真⇒0<1-m<1⇒0<m<1;
由题意(¬p)∨q为假命题,即p为真q为假,故m∈[$-\frac{1}{2}$,0∪[1,2].

点评 本题考查了复合命题的真假;首先正确化简两个命题;根据复合命题的真假得到两个简单命题的等价范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某班级有男生20人,女生30人,从中抽取10人作为样本,恰好抽到了4个男生、6个女生,则下列命题正确的是(  )
A.该抽样可能是简单随机抽样
B.该抽样一定不是系统抽样
C.该抽样中女生被抽到的概率大于男生被抽到的概率
D.该抽样中女生被抽到的概率小于男生被抽到的概率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,且Sn=2an+1,则数列{an}的通项公式为(  )
A.${a_n}=-{2^{n-1}}$B.${a_n}={2^{n-1}}$C.an=2n-3D.${a_n}={2^{n-1}}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设$a=\int_0^π{sinx}dx$,则二项式${({ax-\frac{1}{x}})^6}$的展开式中的常数项是-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin410°sin550°-sin680°cos370°=(  )
A.$-\frac{1}{2}$B.-cos40°C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx-4≤0,x∈R}.
(1)若A∩B={x|1≤x≤3},求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.“a>1”是“函数f(x)=a•x+cosx在R上单调递增”的充分不必要条件条件.(空格处请填写“充分不必要条件”、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“sin2α=$\frac{1}{2}$”是“α=kπ+$\frac{5}{12}$π,k∈Z”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(Ⅱ)若点M到F1、F2的距离之和为4,求椭圆C的方程.

查看答案和解析>>

同步练习册答案