精英家教网 > 高中数学 > 题目详情
设不等式|x+1|+|x-1|≤2的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤
1
6
,|z|≤
1
9
,求证:|x+2y-3z|≤
5
3
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:不等式的解法及应用
分析:(Ⅰ)由条件利用绝对值的意义求得M.
(Ⅱ)由条件利用绝对值不等式的性质可证得不等式.
解答: 解:(Ⅰ)根据绝对值的意义,|x+1|+|x-1|表示数轴上的x对应点到-1、1对应点的距离之和,
它的最小值为2,
故不等式|x+1|+|x-1|≤2的解集为M=[-1,1].
(Ⅱ)∵x∈M,|y|≤
1
6
,|z|≤
1
9

∴|x+2y-3z|≤|x|+2|y|+3|z|≤1+2×
1
6
+3×
1
9
=
5
3

∴:|x+2y-3z|≤
5
3
成立.
点评:本题主要考查绝对值的意义,绝对值不等式的解法,绝对值三角不等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若AB=BC=2EF=2,BD与平面BCF成30°的角,求二面角F-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1,C2都是以原点O为对称中心,坐标轴为对称轴、离心率相等的椭圆,点M的坐标是(0,1),线段MN是曲线C1的短轴,并且是曲线C2的长轴,直线l:y=m(0<m<1)与曲线C1交于A,D两点(A在D的左侧),与曲线C2交于B,C两点(B在C的左侧).
(1)当m=
3
2
,|AC|=
5
4
时,求椭圆C1,C2的方程;
(2)当OC⊥AN,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是实数,证明ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,若a=
2
,b=2,B=45°.求:
(1)角A的大小;
(2)边c的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2x.
(I)证明:对任意x∈R,f(x)>2x-6恒成立;
(Ⅱ)解不等式f(x)≤|x-1|+|x-2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
4
+y2=1.
(1)求此椭圆的焦点坐标和离心率;
(2)设此椭圆的左右焦点为F1,F2,过F2作x轴的垂线交椭圆于A、B两点,试求△ABF1的周长与面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下面材料:根据两角和与差的余弦公式,有
cos(α+β)=cosαcosβ-sinαsinβ①
cos(α-β)=cosαcosβ+sinαsinβ②
由①-②得 cos(α+β)-cos(α-β)=-2sinαsinβ
令 α+β=A,α-β=B,有α=
A+B
2
,β=
A-B
2
代入③得cosA-cosB=-2sin
A+B
2
sin
A-B
2

(1)类比上述推理方法,根据两角和与差的正弦公式,证明:sinA+sinB=2sin
A+B
2
cos
A-B
2

(2)若在△ABC的三个内角A,B,C,满足在cos2A-cos2B=1-cos2C试判断△ABC的形状.(提示:如需要可直接利用或参阅结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α,β为锐角,且cos(α+β)sinβ=sinα,则tanα的最大值是
 

查看答案和解析>>

同步练习册答案