精英家教网 > 高中数学 > 题目详情
已知角α,β为锐角,且cos(α+β)sinβ=sinα,则tanα的最大值是
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由条件利用两角和差的正弦公式、同角三角函数的基本关系可得 2tanα•tan2β-tanβ+tanα=0,再根据△=1-8tan2α≥0,求得tanα的最大值.
解答: 解:角α,β为锐角,且cos(α+β)sinβ=sinα=sin[(α+β)-β],
∴cos(α+β)sinβ=sin(α+β)cosβ-cos(α+β)sinβ,
化简可得 tan(α+β)=2tanβ,即
tanα+tanβ
1-tanαtanβ
=2tanβ,
故有 2tanα•tan2β-tanβ+tanα=0,∴△=1-8tan2α≥0,
求得-
2
4
≤tanα≤
2
4
,α为锐角,故0<tanα≤
2
4

故答案为:
2
4
点评:本题主要考查两角和差的正弦公式,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式|x+1|+|x-1|≤2的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤
1
6
,|z|≤
1
9
,求证:|x+2y-3z|≤
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
x2
-lnx,a∈R
(1)若a=1,求f(x)的单调递增区间;
(2)若任意x∈(0,e],函数g(x)=
a
2
x2-lnx-
1
2
的值恒为正值,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是奇函数,当x>0时f(x)=x-x2,求函数f(x)的解析式并作图指出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A中有5个元素,数集B中有3个元素,若集合B中的元素在A中都有元素和它对应,且满足f(a1)<f(a2)<(fa3)<f(a4)<f(a5),共可以构成几种从B到A的映射?

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a8=0,则有a1+a2+a3+…+an=a1+a2+a3+…+a15-n成立.类比此性质,在等比数列{bn}中,若b10=1,则存在式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an=-2an-1(n≥2,n∈N),则其前6项的和S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正方形ABCD和正方形ABEF所在的面成60°角,M,N分别是线段AC和BF上的点,且AM=FN,则线段MN的长的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的偶函数,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=2x,若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案