精英家教网 > 高中数学 > 题目详情
11.如图,在四棱锥E-ABCD中,△ADE是正三角形,侧面ADE⊥底面ABCD,AB∥DC,BD=2DC=4,AD=3,AB=5.
(Ⅰ)求证:BD⊥AE;
(Ⅱ)求二面角B-AE-D的正切值;
(Ⅲ)求三棱锥C-BDE的体积.

分析 (Ⅰ)在正三角形ADE中,取AD中点G,连接EG,则EG⊥AD,利用面面垂直的性质可得EG⊥BD.再由已知结合勾股定理可的BD⊥AD,由线面垂直的判定可得BD⊥平面ADE,则BD⊥AE;
(Ⅱ)取AE中点H,则DH⊥AE,结合(Ⅰ)可得AE⊥BH,则∠BHD为二面角B-AE-D的平面角.求解直角三角形可得二面角B-AE-D的正切值;
(Ⅲ)在Rt△ADB中,sin$∠ABD=\frac{3}{5}$,得sin∠CDB=$\frac{3}{5}$.利用面积公式求得△BDC的面积,再由等积法求三棱锥C-BDE的体积.

解答 (Ⅰ)证明:在正三角形ADE中,取AD中点G,连接EG,则EG⊥AD,
∵侧面ADE⊥底面ABCD,且侧面ADE∩底面ABCD=AD,
∴EG⊥平面ABD,则EG⊥BD.
∵AD=3,BD=4,AB=5,∴AD2+BD2=AB2,则BD⊥AD,
∵AD∩EG=G,
∴BD⊥平面ADE,则BD⊥AE;
(Ⅱ)解:取AE中点H,则DH⊥AE,
由(Ⅰ)知BD⊥AE,则AE⊥平面BDH,∴AE⊥BH,
则∠BHD为二面角B-AE-D的平面角.
∴tan∠BHD=$\frac{BD}{DH}$=$\frac{4}{\frac{3\sqrt{3}}{2}}=\frac{8\sqrt{3}}{9}$;
(Ⅲ)解:在Rt△ADB中,sin$∠ABD=\frac{3}{5}$,
∵AB∥DC,∴sin∠CDB=$\frac{3}{5}$.
则${S}_{△BDC}=\frac{1}{2}×2×4×\frac{3}{5}=\frac{12}{5}$.
∴${V}_{C-BDE}={V}_{E-BDC}=\frac{1}{3}×\frac{12}{5}×\frac{3\sqrt{3}}{2}=\frac{6\sqrt{3}}{5}$.

点评 本题考查面面垂直的性质与线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,正确找出二面角的平面角是解答(Ⅱ)的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.有两对夫妇各带一个小孩到动物园游玩,购票后排成一队依次入园.为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这六人的入园顺序排法种数为24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市举行的英文拼字大赛中,要求每人参赛队选取2名选手比赛,有两种比赛方案,方案一:现场拼词,正确得2分,不正确不得分;方案二:听录音拼词,正确得3分,不正确不得分,比赛项目设个人赛:每位选手可自行选择方案,拼词一次,累计得分高者胜.团体赛:2名选手只能选择同一方案,每人拼词一次,两人得分累计得分高者胜.现有来自某参赛队的甲、乙两名选手,他们在“现场拼词”正确的概率均为$\frac{2}{3}$,在“听录音拼词”正确的概率为p0(0<p0<1).
(Ⅰ)在个人赛上,甲选择了方案一,乙选择了方案二,结果发现他们的累计得分不超过3分的概率为$\frac{7}{9}$,求
p0
(Ⅱ)在团体赛上,甲、乙两人选择何种方案,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为(  )
A.$\frac{a+b}{2}≥\sqrt{ab}$(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)
C.$\frac{2ab}{a+b}≤\sqrt{ab}$(a>0,b>0)D.$\frac{a+b}{2}≤\sqrt{\frac{{{a^2}+{b^2}}}{2}}$(a>0,b>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,sin(B-C)=4cosBsinC,则$\frac{b}{c}$等于(  )
A.2$\sqrt{2}$+1B.2$\sqrt{2}$-1C.$\sqrt{6}$+1D.$\sqrt{6}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.“孝敬父母,感恩社会”是中华民族的传统美德,从出生开始,父母就对我们关心无微不至,其中对我们物质帮助是最重要的一个指标,下表是一个统计员在统计《父母为我花了多少》当中使用处理得到下列的数据:
参考数据公式:$\sum_{i=1}^{6}$xiyi=1024.6,$\sum_{i=1}^{6}$xi2=730,$\overline{x}$=9,$\overline{y}$=$\frac{379}{30}$
线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$
岁数x 1 2 612 16 17 
 花费累积y(万元) 12.8  9 17 22 24
假设花费累积y与岁数x符合线性相关关系,求:
(1)花费累积y与岁数x的线性回归直线方程(系数保留3位小数);
(2)24岁大学毕业之后,我们不再花父母的钱,假设你在30岁成家立业之后,在你50岁之前偿还父母为你的花费(不计利总),那么你每月要偿还父母约多少元钱?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知a=5,b=5$\sqrt{3}$.C=30°,则角C的对边c的长为(  )
A.5$\sqrt{13}$B.5$\sqrt{11}$C.5$\sqrt{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列三句话按“三段论”模式,小前提是(  )
①y=cosx(x∈R)是三角函数;
②三角函数是周期函数;
③y=cosx(x∈R)是周期函数.
A.B.C.D.①或③

查看答案和解析>>

同步练习册答案