精英家教网 > 高中数学 > 题目详情
1.下列三句话按“三段论”模式,小前提是(  )
①y=cosx(x∈R)是三角函数;
②三角函数是周期函数;
③y=cosx(x∈R)是周期函数.
A.B.C.D.①或③

分析 根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.

解答 解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:
①y=cosx(x∈R )是三角函数是“小前提”;
②三角函数是周期函数是“大前提”;
③y=cosx(x∈R )是周期函数是“结论”;
故选:A

点评 本题考查的知识点是演绎推理的基本方法:大前提一定是一个一般性的结论,小前提表示从属关系,结论是特殊性结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥E-ABCD中,△ADE是正三角形,侧面ADE⊥底面ABCD,AB∥DC,BD=2DC=4,AD=3,AB=5.
(Ⅰ)求证:BD⊥AE;
(Ⅱ)求二面角B-AE-D的正切值;
(Ⅲ)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则下列结论:①将f(x)的图象向左平移$\frac{π}{6}$个单位,所得到的函数是偶函数:②f(0)=1;③最小正周期为π;④$f(\frac{12π}{11})<f(\frac{14π}{13})$;⑤$f(x)=-f(\frac{5π}{3}-x)$.其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)-f(x)>0恒成立,则不等式f(x)<0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥$\sqrt{(y+1)(z+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,图象的一部分符合右图的是(  )
A.$y=sin(x+\frac{π}{6})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(2x+\frac{π}{6})$D.$y=sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一半径为4m的水轮(如图),水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时.
(1)将点P距离水面的高度h(m)表示为时间t(s)的函数;
(2)在水轮转动的一圈内,有多长时间点P距水面的高度超过4m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a>0,b>0,且a+b=$\frac{1}{a}$+$\frac{1}{b}$.证明:
(1)设$M=\frac{1}{a+1}+\frac{1}{b+1}$,$N=\frac{a}{a+1}+\frac{b}{b+1}$,求证M=N
(2)a2+a<2与b2+b<2不可能同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间(0,2)内随机取出两个数x,y,则1,x2,y能作为三角形三条边的概率为(  )
A.$\frac{{\sqrt{3}+1}}{4}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{3-\sqrt{3}}}{4}$D.$\frac{{3-\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案