| A. | $\frac{a+b}{2}≥\sqrt{ab}$(a>0,b>0) | B. | a2+b2≥2ab(a>0,b>0) | ||
| C. | $\frac{2ab}{a+b}≤\sqrt{ab}$(a>0,b>0) | D. | $\frac{a+b}{2}≤\sqrt{\frac{{{a^2}+{b^2}}}{2}}$(a>0,b>0) |
分析 由图形可知:OF=$\frac{1}{2}AB$=$\frac{a+b}{2}$,OC=$\frac{a-b}{2}$.在Rt△OCF中,由勾股定理可得:CF=$\sqrt{(\frac{a+b}{2})^{2}+(\frac{a-b}{2})^{2}}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$.利用CF≥OC即可得出.
解答 解:由图形可知:OF=$\frac{1}{2}AB$=$\frac{a+b}{2}$,OC=$\frac{a-b}{2}$.![]()
在Rt△OCF中,由勾股定理可得:
CF=$\sqrt{(\frac{a+b}{2})^{2}+(\frac{a-b}{2})^{2}}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$.
∵CF≥OC,
∴$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$.(a,b>0).
故选:D.
点评 本题考查了圆的性质、勾股定理、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 一次购物数量 | 1至2盒 | 3至5盒 | 6至9盒 | 10至17盒 | 18至25盒 |
| 顾客数量(人) | 20 | 14 | 10 | 2 | 4 |
| 结算的时间(分钟/人) | 1 | 1.5 | 2 | 1.5 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{4}^{1}$C${\;}_{4}^{3}$C${\;}_{2}^{2}$ | B. | A${\;}_{3}^{1}$A${\;}_{4}^{3}$ | ||
| C. | C${\;}_{4}^{3}$A${\;}_{2}^{2}$ | D. | ${C}_{4}^{2}{A}_{3}^{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(0,2) | D. | (-2,0)∪(2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com