精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中点.
(Ⅰ)证明:PA∥平面BDM;
(Ⅱ)求二面角B-DM-C的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面平行的判定
专题:空间角
分析:(Ⅰ)连结AC,交BD于O,连结MO,利用三角形的中位线推导出MO∥AP,由此能证明PA∥平面BDM.
(Ⅱ)以D原点,DA,DC,DP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B-DM-C的余弦值.
解答: (Ⅰ)证明:连结AC,交BD于O,连结MO,
∵底面ABCD是正方形,M是PC的中点,
∴O是AC的中点,
∴MO是△APC的中位线,∴MO∥AP,
∵PA不包含于平面BDM,MO?平面BDM,
∴PA∥平面BDM.
(Ⅱ)解:以D原点,DA,DC,DP分别为x,y,z轴,
建立空间直角坐标系,
设PD=DA=2,∵侧棱PD⊥底面ABCD,底面ABCD是正方形,M是PC的中点,
∴D(0,0,0),B(2,2,0),C(0,2,0),P(0,0,2),M(0,1,1),
DB
=(2,2,0)
DM
=(0,1,1)
DC
=(0,2,0),
设平面BDM的法向量
n
=(x,y,z)
,则
n
DB
=0,
n
DM
=0

2x+2y=0
y+z=0
,取x=1,得
n
=(1,-1,1),
设平面DMC的法向量
m
=(x1y1z1)
,则
m
DM
=0,
m
DC
=0

y1+z1=0
2y1=0
,∴
m
=(1,0,0),
设二面角B-DM-C的平面角为θ,
则cosθ=|cos<
n
m
>|=|
1
3
|=
3
3

∴二面角B-DM-C的余弦值是
3
3
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=
2
sinx+cosx,x∈[0,π]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知OPQ是半径为
3
,圆心角为
π
3
的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形,记∠COP=x,矩形ABCD的面积为f(x).
(Ⅰ)求函数f(x)的解析式,并写出其定义域;
(Ⅱ)求函数y=f(x)+f(x+
π
4
)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2).
(Ⅰ)若
a
b
,求tanθ的值;    
(Ⅱ)若|
a
|=|
b
|,求sin(2θ+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2-bx+1(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若b=0,h(x)=f(x)-g(x),?x1、x2[1,2]使得h(x1)-h(x2)≥M成立,求满足上述条件的最大整数M;
(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sinθ+cosθ=-
1
5
,求sin2θ的值;
(2)已知cos2α=
4
5
,求sin4α-cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两村合用一个变压器,如图所示,若两村用同型号线架设输电线路,问:变压器设在输电干线何处时,所需电线最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足|z|≤2,则复数z在复平面内对应的点Z的集合构成的图形的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知具有线性相关的两个变量x,y满足:①样本点的中心为(1,3);②回归直线方程为y=2x+a.据此预测:x=15时,y的值约为
 

查看答案和解析>>

同步练习册答案