精英家教网 > 高中数学 > 题目详情
已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(1)求该圆台母线的长;
(2)求该圆台的体积.
考点:旋转体(圆柱、圆锥、圆台)
专题:计算题,空间位置关系与距离
分析:(1)求出圆台的上底面面积,下底面面积,写出侧面积表达式,利用侧面面积等于两底面面积之和,求出圆台的母线长;
(2)利用勾股定理求得圆台的高h,根据圆台的体积公式求出它的体积即可.
解答: 解:(1)设圆台的母线为l,则由题意得π(2+6)l=π•22+π•62
∴8πl=40π,l=5.
∴该圆台的母线长为5;
(2)设圆台的高为h,由勾股定理可得h=
l2-(6-2)2
=3

∴圆台的体积 V=
1
3
π×(22+62+2×6)×3=52π.
点评:本题考查了圆台的侧面积和表面积公式、体积公式,考查计算能力,运算要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=cosπx与g(x)=|log2|x-1||,则关于f(x)与g(x)的下列说法正确的是
 

①函数f(x+1)为偶函数;
②函数g(x)为偶函数;
③在同一坐标系中作出两函数的图象,它们共有4个不同的交点;
④在同一坐标系中作出两函数的图象,它们所有交点的横坐标之和为6;
⑤在同一坐标系中作出两函数的图象,它们所有交点的横坐标之和为4.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合 A={x|-2≤x≤4},B={x|x<a},且A∩B≠∅,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下例等式中,对任意实数α,β均满足的是(  )
A、tan(α+β)=
tanα+tanβ
1-tanαtanβ
B、tan(α-β)=
tanα-tanβ
1+tanαtanβ
C、cos2α=2cos2α-1
D、sin2α-2sin2α=1

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点P(6,4)且与x轴正半轴交于点A,与y轴正半轴交于点B,O为坐标原点.若M为线段AB上一点,且直线OM的斜率为4,当△OAM的面积最小时,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
6
),若x∈[0,
π
2
]时函数y=f(x)+a的最小值为-2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x+
a
x
+b(a,b∈R)
为奇函数.
(Ⅰ)若f(1)=5,求函数f(x)的解析式;
(Ⅱ)当a=-2时,不等式f(x)≤t在[1,4]上恒成立,求实数t的最小值;
(Ⅲ)当a≥1时,求证:函数g(x)=f(2x)-c(c∈R)在(-∞,-1]上至多有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC-1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若a+c=
3
3
2
b=
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线-x+
3
y-6=0的斜率为
 
,在y轴截距为
 

查看答案和解析>>

同步练习册答案