| A. | $\sqrt{3}$ | B. | $1+\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | $3+\sqrt{3}$ |
分析 根据题意可知∠F1PF2=90°,∠PF1F2=60°,|F1F2|=2c,求得|PF1|和|PF2|,进而利用双曲线定义建立等式,求得a和c的关系,则离心率可得.
解答 解:依$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0,tan∠P{F_1}{F_2}=\sqrt{3}$,
可知∠F1PF2=90°,|F1F2|=2c,∠PF1F2=60°,
∴|PF2|=$\frac{\sqrt{3}}{2}$|F1F2|=$\sqrt{3}$c,|PF1|=$\frac{1}{2}$|F1F2|=c,
由双曲线定义可知|PF2|-|PF1|=2a=($\sqrt{3}$-1)c,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1.
故选:B.
点评 本题主要考查了双曲线的简单性质特别是双曲线定义的运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<3} | B. | {x|x≤1} | C. | {x|x<3} | D. | {x|0<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com