精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,若点P在椭圆上,且满足|PO|2=|PF1|•|PF2|(其中O为坐标原点),则称点P为“*”点,则椭圆上的“*”点有4个.

分析 设出椭圆上的点P(x0,y0),利用焦半径公式,表示出|PO|2=|PF1|•|PF2|,求出点的坐标,得出结论.

解答 解:设椭圆上的点P(x0,y0),则$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,y02=b2(1-$\frac{{x}_{0}^{2}}{{a}^{2}}$),
椭圆的第二定义可知:|PF1|=a-ex0,|PF2|=a+ex0
因为|PO|2=|PF1|•|PF2|,则x02+y02=a2-e2x02
则有x02+b2(1-$\frac{{x}_{0}^{2}}{{a}^{2}}$)=x02+y02,解得x0=±$\frac{\sqrt{2}a}{2}$,
因此满足条件的有四个点,
故答案为:4.

点评 本题考查了椭圆的新定义问题,解题时应利用焦半径列出方程,求出点的坐标,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-x-2<0},$B=\left\{{x|{{log}_4}x<\frac{1}{2}}\right\}$,则(  )
A.A∩B=∅B.UA∪B=RC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图2所示的程序框图,若输出S=7,则输入k(k∈N*)的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知a>0,b>0,$\frac{1}{b}$-$\frac{1}{a}$>1.求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值的正整数n的值是5或6,使前n项和Sn>0的正整数n的最大值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某人向平面区域$|x|+|y|≤\sqrt{2}$内任意投掷一枚飞镖,则飞镖恰好落在单位圆x2+y2=1内的概率为(  )
A.$\frac{π}{4}$B.$\frac{{\sqrt{3}π}}{4}$C.$\frac{π}{8}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,将△ABC沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求证:CD⊥A′B;
(Ⅱ)试在线段A′C上确定一点P,使得三棱锥P-BDC的体积为$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数为奇函数的是(  )
A.y=$\sqrt{x}$B.y=|sinx|C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用a、b表示两条不同的直线,α、β表示两个不同的平面,给出下列命题:
①若a∥b,a∥α,则b∥α;    ②若a⊥α,b⊥α,则a∥b;③若a∥α,b⊥α,则a⊥b;    ④若a⊥α,α∥β,则a⊥β.
其中正确的是②③④.

查看答案和解析>>

同步练习册答案