已知数列{an}的通项公式为an=n2-n-30.
(1)求数列的前三项,60是此数列的第几项?
(2)n为何值时,an=0,an>0,an<0?
(3)该数列前n项和Sn是否存在最值?说明理由.
(1)第10项 (2)0<n<6(n∈N*) (3)不存在,见解析
【解析】【解析】
(1)由an=n2-n-30,得
a1=1-1-30=-30,
a2=22-2-30=-28,
a3=32-3-30=-24.
设an=60,则60=n2-n-30.
解之得n=10或n=-9(舍去).
∴60是此数列的第10项.
(2)令an=n2-n-30=0,
解得n=6或n=-5(舍去),∴a6=0.
令n2-n-30>0,
解得n>6或n<-5(舍去).
∴当n>6(n∈N*)时,an>0.
令n2-n-30<0,解得0<n<6,
∴当0<n<6(n∈N*)时,an<0.
(3)Sn存在最小值,不存在最大值.
由an=n2-n-30=(n-
)2-30
,(n∈N*)
知{an}是递增数列,且
a1<a2<…<a5<a6=0<a7<a8<a9<…,
故Sn存在最小值S5=S6,不存在Sn的最大值.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-1不等关系与不等式(解析版) 题型:解答题
已知关于x的不等式(ax-5)(x2-a)<0的解集为M.
(1)当a=4时,求集合M;
(2)当3∈M,且5∉M时,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:选择题
已知各项为正的等比数列{an}中,a4与a14的等比中项为2
,则2a7+a11的最小值为( )
A.16 B.8 C.6 D.4
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-2等差数列及其前n项和(解析版) 题型:填空题
设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a11+a12+a13+a14=________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-2等差数列及其前n项和(解析版) 题型:选择题
若等差数列的第一、二、三项依次是
、
、
,则数列的公差d是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-1数列的概念与简单表示法(解析版) 题型:填空题
已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2009=________;a2014=________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-4数系的扩充与复数的引入(解析版) 题型:填空题
已知复数z1=cosθ-i,z2=sinθ+i,则z1·z2的实部的最大值为________,虚部的最大值为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:选择题
平面上有四个互异的点A,B,C,D,满足(
-
)·(
-
)=0,则△ABC是( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等边三角形
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-1向量的概念及运算(解析版) 题型:选择题
若四边形ABCD满足
+
=0,(
-
)·
=0,则该四边形一定是( )
A.直角梯形 B.菱形 C.矩形 D.正方形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com