精英家教网 > 高中数学 > 题目详情
19.如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
(1)判断直线DE与⊙O的位置关系,并说明理由.
(2)若⊙O的半径R=5,tanA=$\frac{3}{4}$,求线段CD的长.

分析 (1)连接OD,由∠ODA=∠A,及∠BDE=∠A,求得∠ODA=∠BDE,由AB是⊙O直径,可知∠ODA+∠ODB=90°,即∠ODE=90°,可得DE与⊙O相切;
(2)Rt△ABC中∵tanA=$\frac{BC}{AB}$=$\frac{3}{4}$,求得BC,利用勾股定理求得AC的长,可得△BCD∽△ACB,利用相似三角形对应边成比例即可求得线段CD的长.

解答 解:(1)直线DE与⊙O相切.
理由如下:连接OD.
∵OA=OD,
∴∠ODA=∠A,
又∵∠BDE=∠A,
∴∠ODA=∠BDE
∵AB是⊙O直径,
∴∠ADB=90°
即∠ODA+∠ODB=90°,
∴∠BDE+∠ODB=90°,
∴∠ODE=90°
∴OD⊥DE,
∴DE与⊙O相切;….(4分)
(2)∵R=5,∴AB=10,
在Rt△ABC中∵tanA=$\frac{BC}{AB}$=$\frac{3}{4}$,
∴BC=AB•tanA=10×$\frac{3}{4}$=$\frac{15}{2}$,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{1{0}^{2}+(\frac{15}{2})^{2}}$=$\frac{25}{2}$,
∵∠BDC=∠ABC=90°,∠BCD=∠ACB,∴△BCD∽△ACB
∴$\frac{CD}{CB}$=$\frac{CB}{CA}$,
∴CD=$\frac{C{B}^{2}}{CA}$=$\frac{(\frac{15}{2})^{2}}{\frac{25}{2}}$=$\frac{9}{2}$.…(9分)

点评 本题考查切线的性质与判断,勾股定理及相似三角形的判定与性质,考查数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为$ρ=4\sqrt{2}sin(\frac{3π}{4}-θ)$
(1)将圆C的极坐标方程化为直角坐标方程;
(2)过点P(0,2)作斜率为$\sqrt{3}$直线l与圆C交于A,B两点,试求$|{\frac{1}{|PA|}-\frac{1}{|PB|}}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,t),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数t的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,则a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)当a=-1时,求f(x)的单调区间,
(2)若函数f(x)在(2,+∞)上为单调递增函数,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以曲线y=cos2x为曲边的曲边形(如图阴影部分)面积为$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设直线l的方程为(a-1)x+y+a+3=0,(a∈R).
(1)若直线l在两坐标轴上截距的绝对值相等,求直线l的方程;
(2)若直线l不经过第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=1+$\sqrt{4-{x^2}}$与直线y=k(x-2)+4有两个不同交点的充要条件是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某研究性学习小组,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他们分别记录了2月11日至2月16日的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯),得到如表数据:
日期2月11日2月12日2月13日2月14日2月15日2月16日
平均气温x(℃)1011131286
饮料销量y(杯)222529261612
该小组的研究方案:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两天的概率;
(Ⅱ)若选取的是11日和16日的两组数据,请根据12日至15日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并判断该小组所得线性回归方程是否理想.(若由线性回归方程得到的估计数据与所选的检验数据的误差均不超过2杯,则认为该方程是理想的)

查看答案和解析>>

同步练习册答案