精英家教网 > 高中数学 > 题目详情
已知数列{an}是公比为q的等比数列,a1=1,an+2=
an+1+an
2
(n∈N*
(1)求{an}的通项公式;
(2)令bn=nan,求{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得a1q2=
a1q+a1
2
,解得q=1或q=-
1
2
,由此能求出an=1或an=(-
1
2
)n-1

(2)当an=1时,bn=n,Sn=1+2+…+n=
n(n+1)
2
.当an=(-
1
2
)n-1
时,bn=nan=n•(-
1
2
)n-1
,由此利用裂项求和法能求出Sn=
4
9
-(
4
9
+
2n
3
)•(-
1
2
)n
解答: 解:(1)∵数列{an}是公比为q的等比数列,a1=1,an+2=
an+1+an
2
(n∈N*
a3=
a2+a1
2
,∴a1q2=
a1q+a1
2

∴2q2-q-1=0,
解得q=1或q=-
1
2

∴an=1或an=(-
1
2
)n-1

(2)当an=1时,bn=n,Sn=1+2+…+n=
n(n+1)
2

an=(-
1
2
)n-1
时,bn=nan=n•(-
1
2
)n-1

Sn=(-
1
2
)0+2•(-
1
2
)+3•(-
1
2
)2+…+n•(-
1
2
)n-1
,①
-
1
2
Sn
=(-
1
2
)+2•(-
1
2
)2+3•(-
1
2
)3+…+n•(-
1
2
)n
,②
①-②,得
3
2
Sn
=(-
1
2
)0+(-
1
2
)+(-
1
2
)2+…+(-
1
2
)n
-n•(-
1
2
)n

=
1-(-
1
2
)n
1-(-
1
2
)
-n•(-
1
2
)n

Sn=
4
9
-(
4
9
+
2n
3
)•(-
1
2
)n
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列式子正确的是(  )
A、a2+
1
a2+1
≥1
B、sinx+
1
sinx
≥2(0<x<
π
2
C、
x
+
1
x
>2
D、x+
1
x
≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
1-|x|
|1-x|
的图象,并求其分段解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

小华参加学校创意社团,上交一份如图所示的作品:边长为2的正方形中作一内切圆⊙O,在⊙O内作一个关于正方形对角线对称的内接“十”字形图案.OA垂直于该“十”字形图案的一条边,点P为该边上的一个端点.记“十”字形图案面积为S,∠AOP=θ.试用θ表示S,并由此求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0).四点(-
3
3
2
)、(1,
3
2
)、(
2
,0)、(
3
,-
3
2
)中有三点在椭圆C上.
(1)求椭圆C的方程;
(2)动直线l过点A(2,0),与y轴交于点R,与椭圆C交于点Q(Q不与A重合).过原点O作直线l的平行线m,直线m与椭圆C的一个交点记为P.问:是否存在常数λ使得|AQ|、λ|OP|、|AR|成等比数列?若存在,请你求出实数λ的值;若不存在,请说明缘由.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示算法:
(1)指出该算法表示的功能;
(2)画出算法框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,AA1=AB,E是侧棱AA1的中点.
(Ⅰ)证明:BC1⊥EC;
(Ⅱ)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=alnx,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=
f(-x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),点A关于y轴的对称点为B,直线AM,BM相交于点M,且两直线的斜率kAM、kBM满足kAM-kBM=2.
(1)求点M的轨迹C的方程;
(2)设轨迹C与y轴的交点为T,是否存在平行于AT的直线l,使得直线l与轨迹C有公共点,且直线AT与l的距离等于
2
2
?若存在,求直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案