已知函数f(x)=为奇函数,f(1)<f(3),
且不等式0≤f(x)≤的解集是{x|-2≤x≤-1或2≤x≤4}.
(1)求a,b,c的值;
(2)是否存在实数m使不等式f(-2+sinθ)<-m2+对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.
(1)∵f(x)是奇函数,∴f(-x)=-f(x)对定义域内的一切x都成立,
即b=0.
从而f(x)=(x+).
又∵
即
∴f(2)=0,解之,得c=-4.
再由f(1)<f(3),得或从而a>0.
此时f(x)=(x-)
在[2,4]上是增函数.
注意到f(2)=0,则必有f(4)=,∴(4-)=,
即a=2.
综上可知,a=2,b=0,c=-4.
(2)由(1),得f(x)=(x-),该函数在(-∞,0)以及(0,+∞)上均为增函数.
又∵-3≤-2+sinθ≤-1,
∴f(-2+sin θ)的值域为
[-,].
符合题设的实数m应满足-m2>,即m2<0,故符合题设的实数m不存在.
【解析】略
科目:高中数学 来源: 题型:
(09年泗阳中学模拟六)(14分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年山东卷理)(本小题满分12分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三第三次月考理科数学(普通班)(解析版) 题型:解答题
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(1)求f(
)的值;
(2)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com