精英家教网 > 高中数学 > 题目详情
对两个变量x和y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是(  )
A、由样本数据得到的回归方程
y
=
b
x+
a
必过样本点的中心(
.
x
.
y
B、残差平方和越小的模型,拟合的效果越好
C、用相关指数R2=1-
n
i=1
(yi-
yi)2
n
i=1
(yi-
.
y
)2
来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D、用相关指数R2=1-
n
i=1
(yi-
yi)2
n
i=1
(yi-
.
y
)2
来刻画回归效果,R2的值越大,说明模型的拟合效果越好
考点:回归分析
专题:计算题,概率与统计
分析:线性回归方程一定过样本中心点,在一组模型中残差平方和越小,拟合效果越好,相关指数表示拟合效果的好坏,指数越小,相关性越.
解答: 解:样本中心点在直线上,故A正确,
残差平方和越小的模型,拟合效果越好,故B正确,
R2越大拟合效果越好,故C不正确,D正确,
故选:C.
点评:本题考查衡量两个变量之间相关关系的方法,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“等边三角形的三个内角相等”的逆否命题;
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定映射f:(x,y)→(x+2y,2x-y),在映射f下与(4,3)对应的(x,y)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD中,AB、BC、CD的中点分别是P、Q、R,且PQ=2,QR=
5
,PR=3,那么异面直线AC和BD所成的角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
x|x|
16
+
y|y|
9
=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程
y|y|
16
+
x|x|
9
=1确定的曲线.
其中所有正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x3是(  )
A、偶函数且是增函数
B、奇函数且是增函数
C、偶函数且是减函数
D、奇函数且是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的命题有(  )
(1)用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
(2)将一组数据中的每个数据都加一个常数后,方差恒不变;
(3)用最小二乘法算出的回归直线一定过样本中心(
.
x
.
y
).
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则p(-1<ξ<0)=
1
2
-p.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3,x≥1
2x-x2,x<1
,若不等式f(m+1)≥f(tm-1)对任意m∈[-1,1]恒成立,则实数t的取值范围是(  )
A、[-1,1]∪(1,3]
B、[-1,3]
C、[1,3]
D、(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2在区间[-1,2]上(  )
A、是增函数
B、是减函数
C、既是增函数又是减函数
D、不具有单调性

查看答案和解析>>

同步练习册答案