【题目】定义在R上的偶函数f(x)满足f(e+x)=f(e﹣x),且f(0)=0,当x∈(0,e]时,f(x)=lnx已知方程在区间[﹣e,3e]上所有的实数根之和为3ea,将函数的图象向右平移a个单位长度,得到函数h(x)的图象,,则h(7)=_____.
【答案】
【解析】
根据题意可知函数f(x)是一个周期为2e的偶函数,即可作出函数f(x)在[﹣e,3e]上的图象,由方程的根与两函数图象交点的横坐标的关系可求得的值,再利用二倍角公式化简函数,然后根据平移法则即可求得,从而求得.
因为f(e+x)=f(e﹣x),所以f(x)关于x=e对称,又因为偶函数f(x),
所以f(x)的周期为2e.
当x∈(0,e]时,f(x)=lnx,于是可作出函数f(x)在[﹣e,3e]上的图象如图所示,
方程的实数根是函数y=f(x)与函数的交点的横坐标,
由图象的对称性可知,两个函数在[﹣e,3e]上有4个交点,且4个交点的横坐标之和为4e,所以4e=3ea,故a,
因为,
所以,
故.
故答案为:.
科目:高中数学 来源: 题型:
【题目】销售某种活海鲜,根据以往的销售情况,按日需量(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为元.
(I)求关于的函数关系式;
(II)结合直方图估计利润不小于800元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、为曲线上两点,与的横坐标之和为.
(1)求直线的斜率;
(2)设弦的中点为,过点、分别作抛物线的切线,则两切线的交点为,过点作直线,交抛物线于、两点,连接、.证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》的学生有70位,只阅读过《红楼梦》的学生有20位,则既没阅读过《西游记》也没阅读过《红楼梦》的学生人数与该校学生总数比值的估计值为( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将n2个数排成n行n列的一个数阵,如图:该数阵第一列的n个数从上到下构成以m为公差的等差数列,每一行的n个数从左到右构成以m为公比的等比数列(其中m>0).已知a11=2,a13=a61+1,记这n2个数的和为S.下列结论正确的有( )
A.m=3B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 0 |
若用表中数据所得频率代替概率.
(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移1个单位,得到函数的图像.
(1)当时,求的值域
(2)令,若对任意都有恒成立,求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值及此时的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由我国引领的5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G经济产出所做的预测.结合下图,下列说法正确的是( )
A.5G的发展带动今后几年的总经济产出逐年增加
B.设备制造商的经济产出前期增长较快,后期放缓
C.设备制造商在各年的总经济产出中一直处于领先地位
D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com