【题目】设
、
为曲线
上两点,
与
的横坐标之和为
.
(1)求直线
的斜率;
(2)设弦
的中点为
,过点
、
分别作抛物线的切线,则两切线的交点为
,过点
作直线
,交抛物线于
、
两点,连接
、
.证明:
.
【答案】(1)
;(2)证明见解析.
【解析】
(1)设点
、
,可得出
,
,
,然后利用斜率公式可计算出直线
的斜率;
(2)利用导数求出
和
,可证明出
,设直线
的方程为
,将直线
的方程与抛物线的方程联立,列出韦达定理,求出点
的坐标,求出切线方程,可求出点
的坐标,设直线
的方程,与抛物线的方程联立,利用韦达定理结合斜率公式求出
,即可证得结论.
(1)设点
、
,可得出
,
,
,
所以,直线
的斜率
;
(2)由(1)知,等价于证明
,
设直线
的方程为
,联立
,消去
得
,
由韦达定理得
,
,
对于函数
,求导得
,
,
,
,
抛物线
在点
处的切线方程为
,整理得
,
同理,抛物线
在点
处的切线的方程为
,
联立方程组
,解得
,
,
.
设
、
,易知直线
的斜率存在,
因为
,设直线
的方程为
,
代入抛物线
,整理得
,
则
,
.
所以
,
,
,
,
,则点
,
所以
,
,
所以![]()
![]()
![]()
.
综上可得
,所以
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy下,曲线C1的参数方程为
(
为参数),曲线C1在变换T:
的作用下变成曲线C2.
(1)求曲线C2的普通方程;
(2)若m>1,求曲线C2与曲线C3:y=m|x|-m的公共点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成
列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为
,求
的分布列及数学期望.
附表及公式: ![]()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在
上的函数
满足:①对任意实数
,
,都有
;②对任意
,都有
.
(1)求
,并证明
是
上的单调增函数;
(2)若![]()
对
恒成立,求实数
的取值范围;
(3)已知
,方程
有三个根
,若
,求实数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分
市某调查机构针对该市市场占有率最高的两种网络外卖企业
以下简称外卖A、外卖
的服务质量进行了调查,从使用过这两种外卖服务的市民中随机抽取了1000人,每人分别对这两家外卖企业评分,满分均为100分,并将分数分成5组,得到以下频数分布表:
分数 人数 种类 |
|
|
|
|
|
外卖A | 50 | 150 | 100 | 400 | 300 |
外卖B | 100 | 100 | 300 | 200 | 300 |
表中得分越高,说明市民对网络外卖服务越满意
若得分不低于60分,则表明该市民对网络外卖服务质量评价较高
现将分数按“服务质量指标”划分成以下四个档次:
分数 |
|
|
|
|
服务质量指标 | 0 | 1 | 2 | 3 |
视频率为概率,解决下列问题:
从该市使用过外卖A的市民中任选5人,记对外卖A服务质量评价较高的人数为X,求X的数学期望.
从参与调查的市民中随机抽取1人,试求其评分中外卖A的“服务质量指标”与外卖B的“服务质量指标”的差的绝对值等于2的概率;
在M市工作的小王决定从外卖A、外卖B这两种网络外卖中选择一种长期使用,如果从这两种外卖的“服务质量指标”的期望角度看,他选择哪种外卖更合适?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线
不与坐标轴垂直,且与抛物线
有且只有一个公共点
.
![]()
(1)当点
的坐标为
时,求直线
的方程;
(2)设直线
与
轴的交点为
,过点
且与直线
垂直的直线
交抛物线
于
,
两点.当
时,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(e+x)=f(e﹣x),且f(0)=0,当x∈(0,e]时,f(x)=lnx已知方程
在区间[﹣e,3e]上所有的实数根之和为3ea,将函数
的图象向右平移a个单位长度,得到函数h(x)的图象,,则h(7)=_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,底面
为菱形,
,
为
上的点,过
的平面分别交
,
于点
,
,且
平面
.
![]()
(1)证明:
;
(2)当
为
的中点,
,
与平面
所成的角为
,求
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com