精英家教网 > 高中数学 > 题目详情
设函数f(x)=ln(1+x)-
ax
x+1
(a∈R).
(1)求函数f(x)的极值;
(2)当a>0时,若对任意的x≥0,恒有f (x)≥0,求实数a的取值范围;
(3)设x∈N且x>2,试证明:lnx>
1
2
+
1
3
+
1
4
+…+
1
x
(1)函数f(x)的定义域为(-1,+∞),
f′(x)=
1
1+x
-
a
(1+x)2
=
x+1-a
(1+x)2

①当a≤0时,恒有x+1-a>0,恒有f′(x)>0,f(x)在(-1,+∞)上单调递增,无极值;
②当a>0时,由f′(x)=0得x=a-1,
当x∈(-1,a-1)时,f′(x)<0,当x∈(a-1,+∞)时,f′(x)>0,
故函数f(x)在(-1,a-1)上单调递减,在(a-1,+∞)上单调递增,
故当x=a-1时f(x)取得极小值,无极大值,极小值为f(a-1)=lna+1-a.
(2)当0<a≤1时,y=f(x)在(0,+∞)上单调递增,f(x)≥f(0)=0,所以满足题意;
当a>1时,由(1)可知应有f(a-1)=lna+1-a≥0(*)成立,
令g(a)=lna+1-a,则g′(a)=
1
a
-1=
1-a
a
,g′(a)<0,g(a)在(1,+∞)上单调递减,
所以g(a)<0,即f(a-1)=g(a)<0,与(*)不符,
所以a的取值范围是0<a≤1.
(3)由(2)可知,ln(1+x)≥
x
x+1

所以lnx=ln(
2
1
×
3
2
×…×
x
x-1
)=ln2+ln
3
2
+…+ln
x
x-1
=ln(1+1)+ln(1+
1
2
)+…+ln(1+
1
x-1

1
2
+
1
2
1+
1
2
+…+
1
x-1
1+
1
x-1
=
1
2
+
1
3
+
1
4
+…+
1
x
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案