精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,A1,A2是左、右顶点,F是右焦点,B是虚轴的上端点.若在线段BF上(不含端点)存在不同的两点Pi(i=1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出直线BF的方程为bx+cy-bc=0,利用直线与圆的位置关系,结合a<b,即可求出双曲线离心率e的取值范围.
解答: 解:由题意,F(c,0),B(0,b),则直线BF的方程为bx+cy-bc=0,
∵在线段BF上(不含端点)存在不同的两点Pi(i=1,2),使得△PiA1A2(i=1,2)构成以线段A1A2为斜边的直角三角形,
bc
b2+c2
<a

∴e4-3e2+1<0,
∵e>1,
∴e<
5
+1
2

∵a<b,
∴a2<c2-a2
∴e>
2

2
<e<
5
+1
2

故答案为:
2
<e<
5
+1
2
点评:本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)解不等式|2+x|+|2-x|≤4;
(Ⅱ)a,b∈R+,证明:a2+b2
ab
(a+b).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-1|+x.
(1)画出图象;
(2)写出它的单调区间;
(3)当x∈{-3,
3
2
}时,求函数y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=m与函数y=|x2-6x|图象的交点个数为4个,求m的取值范围并作出图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点的直线l与曲线C:
x2
3
+y2
=1相交,若直线l被曲线C所截得的线段长不大于
6
,则直线l的倾斜角α的取值范围是(  )
A、
π
6
≤α≤
6
B、
π
6
<α<
3
C、
π
3
≤α≤
3
D、
π
4
≤α≤
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx+d有两个极值点x1、x2,且|x1-x2|>|f(x1)-f(x2)|,且f(x1)=x1,则关于3af(x)2+2bf(x)+c=0的不同实数根有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

有两个投资项目A、B,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式f(x)和g(x),求y=f(x),y=g(x)在同一坐标系内围成封闭图形的面积;
(2)现将x(0≤x≤10)万元投资A项目,10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),点A是椭圆C的右顶点,点O为坐标原点,在一象限椭圆C上存在一点P,使AP⊥OP,则椭圆的离心率范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-
x+a
x+a+1
图象的对称中心横坐标为3,则a=
 

查看答案和解析>>

同步练习册答案