精英家教网 > 高中数学 > 题目详情
直线y=m与函数y=|x2-6x|图象的交点个数为4个,求m的取值范围并作出图象.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:函数y=|x2-6x|可讨论x去掉绝对值,得到分段函数,画出图象,观察直线y=m与y=|x2-6x|的图象交点为4个的位置,问题得以解决.
解答: 解:画出y=|x2-6x|的图象,如图所示,
∵直线y=m与函数y=|x2-6x|图象的交点个数为4个,
∴由图象可知,0<m<9,
故m的取值范围为(0,9)
点评:本题考查了函数的图象与图象的变换,培养学生画图的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|x2+x-6=0},B={x|ax+1=0},满足A?B,则a取值的集合是(  )
A、{-
1
2
 
 
1
3
}
B、{-
1
2
}
C、{
1
3
}
D、{0,-
1
2
1
3
}

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量
OA
OB
OC
满足
OC
=
a1
2
OA
+
a2013
2
OB
,三点A,B,C共线且该直线不过点O,则S2013的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)在[0,+∞)上单调递增,若f(a-3)+f(3a-5)>0,求常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
|cosα|
cosα
+
|tanα|
tanα
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在梯形ABCD中,AB∥CD,过D作与BC平行的直线交AB于点E,∠ACE=∠ABC,求证:AB•CE=AC•DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,A1,A2是左、右顶点,F是右焦点,B是虚轴的上端点.若在线段BF上(不含端点)存在不同的两点Pi(i=1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(x≠0,a∈R)
(1)当a=4时,证明:函数f(x)在区间[2,+∞)上单调递增;
(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|2-x|≤3,则y=x2-1的最大值是
 

查看答案和解析>>

同步练习册答案