精英家教网 > 高中数学 > 题目详情
15.已知数列{an}中,a2=2,an+1-2an=0,那么数列{an}的前6项和是63.

分析 利用等比数列的前n项和公式即可得出.

解答 解:∵a2=2,an+1-2an=0,
∴an+1=2an,∴2a1=2,解得a1=1.
∴数列{an}是等比数列,首项为1,公比为2,
∴S6=$\frac{{2}^{6}-1}{2-1}$=63.
故答案为:63.

点评 本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}为等差数列,且b1=a1,公差为$\frac{{a}_{2}}{{a}_{1}}$.当n≥3时,比较bn+1与1+b1+b2+…+bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln($\frac{1}{2}+\frac{1}{2}ax$)+x2-ax(a为常数,且a>0).
(Ⅰ)若x=$\frac{1}{2}$是函数f(x)的一个极值点,求a的值;
(Ⅱ)当0<a≤2时,判断f(x)在[$\frac{1}{2},+∞)$上的单调性,并加以证明;
(Ⅲ)若对任意的a∈(1+$\frac{1}{n+1}$,2)(n∈N+,且n为常数),总存在x0∈[$\frac{1}{2},1$],使不等式f(x0)>m(1-a2)成立(m为正实数),试比较m与$\frac{n+1}{4n+6}$的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2作直线交椭圆于A,B两点,已知AF1⊥BF1,∠ABF1=30°,则椭圆的离心率为(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}-\sqrt{3}}{2}$C.$\sqrt{6}$-$\sqrt{2}$D.$\sqrt{6}$-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$离心率是$\frac{{\sqrt{5}}}{2}$,那么b等于(  )
A.1B.2C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,且∠A1AC=$\frac{π}{3}$,点O为AC的中点.
(Ⅰ)求证:AC⊥平面A1OB;
(Ⅱ)求二面角B1-AC-B的余弦值;
(Ⅲ)若点B关于AC的对称点是D,在直线A1A上是否存在点P,使DP∥平面AB1C.若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.正三棱锥S-ABC,底面边长为3,侧棱长为2,则其外接球和内切球的半径是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c(a,b,c∈r)满足f(1)=1,f(-1)=0,且对任意实数x都有f(x)≥x.
(1)求f(x)的解析式;
(2)设g(x)=f(x)-mx(m∈R),求m的取值范围,使g(x)在区间[-1,1]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,P为⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B、C,且PC=2PA,D为线段PC的中点,AD的延长线交⊙O于点E.若PB=$\frac{3}{4}$,则PA=$\frac{3}{2}$;AD•DE=$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案