精英家教网 > 高中数学 > 题目详情
13.函数y=log2(x-1)的定义域是(  )
A.(0,+∞)B.(-1,+∞)C.(1,+∞)D.[-1,+∞)

分析 直接由对数式的真数大于0求解x的取值集合得答案.

解答 解:要使原函数有意义,则x-1>0,即x>1.
∴函数y=log2(x-1)的定义域是(1,+∞).
故选:C.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a,b,c均为不等于1的正数,且ax=by=cz,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=0.
(1)若ax=m,试求a(用x,m表示);
(2)求abc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\sqrt{(x-5)({x}^{2}-25)}$=(5-x)$\sqrt{x+5}$,那么x∈[-5,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设全集U=R,A={x|y=log2(x2-1)},则∁UA=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若y=a+bsinx的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$,则a=$\frac{1}{2}$,b=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列关系中正确的是(  )
A.${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$B.${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$
C.${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$D.${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a3+a4+a5=12,那么a1+a7=(  )
A.3B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)计算:$\frac{1}{{\sqrt{2}-1}}-{(\frac{3}{5})^0}+{(\frac{9}{4})^{-0.5}}+\root{4}{{{{(\sqrt{2}-π)}^4}}}$;
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=2,求$\frac{{{x^4}+{x^{-4}}-3}}{{{x^2}+{x^{-2}}-1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=|x+1|+|x+2|+…+|x+2013|+|x-1|+|x-2|+…+|x-2013|(x∈R),且集合M={a|f(a2-a-2)=f(a+1)},则集合N={f(a)|a∈M}的元素个数有(  )
A.2个B.3个C.4个D.无数个

查看答案和解析>>

同步练习册答案